Невозможность второго рода. Невероятные поиски новой формы вещества - Пол Стейнхардт
Шрифт:
Интервал:
Закладка:
Затем случилась катастрофа с Air Express. И теперь уже никто не смеялся.
С того момента я отказался доверять наши образцы метеорита Хатырка какой-либо службе доставки. Ничего подобного больше никогда не будет отправлено экспресс-почтой, даже международные посылки Луке в Италию. Я настоял на том, чтобы все доставлялось лично, если не мной, то студентом или коллегой, который ехал в Италию, Калифорнию, Вашингтон, Принстон или возвращался оттуда.
К сожалению, утерянные образцы были также последними из тех, что не покрывались эпоксидной смолой, поэтому мы так и не смогли провести рентгеновскую томографию – эксперимент с получением трехмерного изображения, который мог бы открыть совершенно новое измерение в нашем исследовании. Это было и остается для нас огромным разочарованием. Но мы все еще рассматриваем возможность использования этой техники для анализа других метеоритов в поисках металлических алюминиевых сплавов и квазикристаллов.
Квазикристаллы под давлением
Нам пришлось смириться с тем фактом, что два – ДВА! – наших самых ценных образца были потеряны. Мы старались двигаться дальше как могли и сосредоточили свое внимание на поиске новых способов определения того, как образовались метеорит Хатырка и его природные квазикристаллы.
Данные по зерну № 125 наряду с результатами более ранних исследований показали, что метеорит Хатырка испытал высокоскоростное столкновение в космосе – удар, который создал сверхвысокое давление. Отсюда вытекал важный вопрос: можно ли ожидать, что скрытый внутри метеороида квазикристалл, а именно икосаэдрит, выдержит экстремальное давление, более чем в 50 000 раз превышающее атмосферное давление на поверхности Земли?
Если нет, то икосаэдрит никак не мог быть частью Хатырки с момента зарождения Солнечной системы, как считал Гленн, поскольку не выдержал бы высокоскоростного столкновения, который метеороид позднее испытал, путешествуя в космосе. В таком случае мы бы знали, что икосаэдрит образовался уже после испытанного Хатыркой последнего сильного удара, когда давление было намного ниже, как полагал Линкольн.
Этот вопрос оказался в центре нашего исследования. Стабильность квазикристаллов и межатомные силы, удерживающие их атомы вместе, – это ключевые вопросы в физике конденсированных сред и материаловедения. Проверки на устойчивость уже проводились, но либо при более низких давлениях, либо при более низких температурах. При сочетании высоких давлений и температур, характерных для Хатырки, таких исследований никто еще не проводил. Однако много лет назад мы с Довом Левином и Джошем Соколаром сконструировали картонные и пластиковые модели, показывавшие возможность существования межатомных сил, обеспечивающих устойчивость в таких экстремальных условиях.
На этот раз не было необходимости подвергать риску какие-либо из наших образцов. Испытания можно было провести с искусственными квазикристаллами икосаэдрита. Нынешняя доступность синтетических квазикристаллов напоминала о том, как долго я был заворожен этим материалом. Удивительно было сознавать, что теперь искусственные квазикристаллы стали чем-то обыденным, что можно недорого заказать в химической компании.
Организовать эксперимент по проверке устойчивости при высоком давлении и высокой температуре было гораздо более трудной задачей. Очень немногие лаборатории способны выполнять такие сложные испытания с приемлемой точностью. Лука нашел Винченцо Стагно и его коллег Хо-Кванг Мао и Фэй Инвэя в Институте Карнеги в Вашингтоне, округ Колумбия.
Для установки требовалось три компонента: крошечная “наковальня” – ячейка из карбида вольфрама размером менее дюйма для создания давления, ускоритель элементарных частиц с длиной окружности около пяти километров, способный разгонять электроны до скорости 99,9999998 % скорости света и направлять их по кругу, заставляя испускать рентгеновские лучи высокой интенсивности, а также сложные магниты и детекторы, позволяющие очень точно направлять эти лучи на материал в ячейке и фиксировать получаемую рентгеновскую дифракционную картину.
Подобные ускорители и детекторы есть только в пяти местах в мире. Институт Карнеги имеет в своем распоряжении канал с рентгеновским излучением высокой интенсивности в Аргоннской национальной лаборатории близ Чикаго, где и были выполнены пробные эксперименты. Окончательные измерения были проведены на аналогичной установке под названием SPring-8 (Super Photon ring-8 ГэВ) в префектуре Хёго примерно в четырехстах километрах к юго-западу от Токио.
Наш план заключался в том, чтобы окружить синтетические образцы икосаэдрита, квазикристалла того же типа, который мы обнаружили в Хатырке, графитовым нагревательным устройством и поместить его в ячейку-“наковальню” из карбида вольфрама, стенки которой можно сжимать с помощью пресса и таким образом сдавливать все, что находится между ними. Рентгеновские лучи, испускаемые электронным пучком, направлялись бы на квазикристалл, и по мере постепенного роста давления и температуры можно было бы непрерывно отслеживать любые изменения в дифракционной картине. На планирование и проведение этого изящного эксперимента потребовалось полтора года, но результаты того стоили.
Выводы были убедительными и бесспорными. Икосаэдрит не трансформировался даже в экстремальных условиях – при давлении и температуре, которые метеорит Хатырка испытал во время высокоскоростного удара.
Это означало, что в принципе икосаэдрит мог быть частью Хатырки с момента образования более 4,5 миллиарда лет назад, как предполагал Гленн, и впоследствии выдержал все столкновения, которые метеороид пережил в космосе. Но даже если так, этих результатов было недостаточно, чтобы доказать правильность теории Гленна. Альтернативное объяснение Линкольна все еще оставалось возможным. Вполне можно было предположить, что кристаллические сплавы металлов и икосаэдрит образовались в результате сильного столкновения в космосе. Икосаэдрит все еще мог оказаться прямым результатом такого удара.
Благородные газы
Мы знали, что некоторые части метеорита Хатырка образовались 4,5 миллиарда лет назад и что через какое-то время после этого в космосе произошло высокоскоростное столкновение между Хатыркой и другим объектом. Но когда именно?
Чтобы разобраться в этом вопросе, нам понадобилось провести еще один чрезвычайно сложный эксперимент с участием другой группы высококвалифицированных специалистов. Лука отправился в Швейцарский федеральный технологический институт в Цюрихе и передал крошечные кусочки силиката из метеорита Хатырка Хеннеру Бизмэну, Маттиасу Мейеру и Райнеру Уилеру (на фото справа). Уилер специально создавал свою лабораторию для измерения содержания в метеоритах редких изотопов гелия и неона. Бо́льшую часть экспериментов провели его ученики Маттиас и Хеннер. Маттиас был особенно увлечен проектом и вызвался руководить измерениями.
Гелий и неон известны как благородные газы. Это два из шести элементов в крайнем правом столбце таблицы Менделеева. У них нет ни запаха, ни цвета и очень низкая химическая активность.
Путешествуя в космосе, метеороиды бомбардируются космическими лучами – энергичными субатомными частицами, движущимися почти со скоростью света. Соударяясь с атомными ядрами в породе, частицы космических лучей порождают изотопы гелия и неона, отличающиеся числом нейтронов от ядер гелия и неона, которые обычно встречаются на Земле. Измерив процент атипичных ядер, можно определить, как долго метеороид подвергался в межпланетном пространстве воздействию космических лучей.
При сильном столкновении в космосе накопленные в Хатырке гелий и неон должны были потеряться из-за