Медицинская микробиология, иммунология и вирусология - Сергей Бабичев
Шрифт:
Интервал:
Закладка:
Аноптральная микроскопия – разновидность фазово-контрастной микроскопии, при которой применяют объективы со специальными пластинками, нанесенными на одну из линз в виде затемненного кольца.
Принцип аноптральной микроскопии тот же, что и фазово-контрастной, но первая обладает большей разрешающей способностью при микроскопировании объектов, вызывающих незначительный фазовый сдвиг, и открывает новые возможности использования обычного светового микроскопа для прижизненного исследования бактерий, простейших и т. д.
Широкое центральное отверстие в слое копоти или меди, нанесенном на линзу объектива, является как бы люком, выпускающим из объектива бwольшую часть дифрагированного света, в то время как широкий темный слой кольца, покрывающий остальную поверхность линзы, играет роль ловушки для нежелательного периферического дифрагированного света. За счет этого в значительной степени устраняется ореол вокруг исследуемого объекта, фон поля зрения имеет коричневато-серый цвет, а сами объекты имеют различные оттенки от светло-коричневого до белого.
Интерференционная микроскопия
Интерференционная микроскопия решает те же задачи, что и фазово-контрастная, но если последняя позволяет наблюдать лишь контуры объектов исследования, то с помощью интерференционной микроскопии можно изучать детали прозрачного объекта и проводить их количественный анализ. Это достигается благодаря раздвоению луча света в микроскопе: один из лучей проходит через частицу объекта, а другой мимо нее. В окуляре микроскопа оба луча соединяются и интерферируют между собой. Разность возникающих фаз можно измерить, определив таким образом массу различных клеточных структур. Последовательное измерение разности фаз света с известными показателями преломления дает возможность определять толщину живых объектов, концентрацию в них воды и сухого вещества и т. д. На основании данных интерференционной микроскопии можно косвенно судить о проницаемости мембран, активности ферментов, клеточном метаболизме объектов исследования.
Поляризационная микроскопия
Поляризационная микроскопия позволяет изучать объекты исследования в свете, образованном двумя лучами, поляризованными во взаимно перпендикулярных плоскостях, т. е. в поляризованном свете. Для этого используют пленчатые поляроиды или призмы Николя, которые помещают в микроскопе между источником света и препаратом. Поляризация меняется при прохождении лучей света через различные структурные компоненты клеток и тканей, свойства которых неоднородны, или при отражении от них. В оптически изотропных структурах скорость распространения поляризованного света не зависит от плоскости поляризации, в анизотропных структурах она меняется в зависимости от направления света по продольной или поперечной оси объекта. Если показатель преломления света вдоль структуры больше, чем в поперечном направлении, возникает положительное двойное лучепреломление, при обратных взаимоотношениях – отрицательное двойное лучепреломление. Многие биологические объекты имеют строгую молекулярную ориентацию, являются анизотропными и вызывают положительное двойное преломление света.
Темнопольная микроскопия
При микроскопии по методу темного поля препарат освещается сбоку косыми пучками лучей, не попадающими в объектив. В объектив попадают лишь лучи, которые отклоняются частицами препарата в результате отражения, преломления или дифракции. В силу этого микробные клетки и другие частицы представляются ярко светящимися на черном фоне (картина напоминает мерцающее звездное небо).
Для микроскопии в темном поле используют специальный конденсор (параболоид-конденсор или кардиоид-конденсор) и обычные объективы. Поскольку апертура иммерсионного объектива больше, чем апертура конденсора темного поля, внутрь иммерсионного объектива вставляется специальная трубчатая диафрагма, снижающая его апертуру.
Этот метод микроскопии удобен при изучении живых бактерий, спирохет и их подвижности.
Люминесцентная микроскопия
Метод основан на способности некоторых веществ светиться под действием коротковолновых лучей света. При этом длина волны излучаемого при люминесценции света всегда будет больше, чем длина волны света, возбуждающего люминесценцию. Так, если освещать объект синим светом, он будет испускать лучи красного, оранжевого, желтого и зеленого цвета. Препараты для люминесцентной микроскопии окрашивают специальными светящимися красителями – флуорохромами (акридиновый оранжевый, изотиоцианат флуоресцеина и др.). Лучи света от сильного источника (обычно ртутной лампы сверхвысокого давления) пропускают через сине-фиолетовый светофильтр. Под действием этого коротковолнового излучения окрашенные флуорохромом клетки или бактерии начинают светиться красным или зеленым светом. Для того чтобы синий свет, вызвавший люминесценцию, не мешал наблюдению, над окуляром ставят запирающий желтый светофильтр, задерживающий синие, но пропускающий желтые, красные и зеленые лучи. В результате при наблюдении в люминесцентном микроскопе на темном фоне будут видны клетки или бактерии, светящиеся желтым, зеленым или красным светом. Например, при окраске акридиновым оранжевым ДНК клетки (ядерное вещество) будет светиться ярко-зеленым светом. Метод люминесцентной микроскопии позволяет изучать живые нефиксированные бактерии, окрашенные сильно разведенными флуорохромами, не причиняющими вреда микробным клеткам. По характеру свечения могут быть дифференцированы отдельные химические вещества, входящие в состав микробной клетки. Метод с успехом может быть использован для ускоренной диагностики ряда заболеваний (см. также раздел «Реакция иммунофлуоресценции» в гл. 42).
Электронная микроскопия
Для изучения структуры клеток на субклеточном и молекулярном уровнях, а также для изучения вирусов используют электронную микроскопию. Ценность электронной микроскопии заключается в ее способности разрешать объекты, не разрешаемые оптическим микроскопом в видимом или ультрафиолетовом свете. Малая длина волны электронов, которая уменьшается в прямой зависимости от подаваемого ускоряющего напряжения, позволяет разрешать, т. е. различать как отдельные объекты, отстоящие друг от друга всего на 2 2 (0,2 нм, или 0,0002 мкм) или даже меньше, в то время как предел разрешения световой оптики лежит вблизи 0,2 мкм (он зависит от длины волны используемого света). Электронная микроскопия, при которой изображение получают благодаря прохождению (просвечиванию) электронов через образец, называется просвечивающей (трансмиссионной). При сканирующей (растровой), или туннельной, электронной микроскопии пучок электронов быстро сканирует (просматривает) поверхность образца, вызывая излучение (отражение), которое посредством катодно-лучевой трубки формирует изображение на светящемся экране микроскопа по аналогии с формированием телевизионного изображения.
Принципиальная оптическая схема электронного микроскопа аналогична схеме светового, в котором все оптические элементы заменены соответствующими электрическими: источник света – источником электронов, стеклянные линзы – линзами электромагнитными. В электронных микроскопах просвечивающего типа различают три системы: электронно-оптическую, вакуумную, электропитания. Фотографирование изображений при всех видах исследований проводится на фотопластинки или фотопленку. Источником электронов является электронная пушка, состоящая из V-образного вольфрамового термокатода, который при нагревании до 2900 °C при подаче постоянного напряжения до 100 кВ в результате термоэмиссии испускает свободные электроны, ускоряемые затем электростатическим полем, создаваемым между фокусирующим электродом и анодом. Электронный пучок затем формируется с помощью конденсорных линз и направляется на исследуемый объект. Электроны, проходя сквозь объект, за счет его разной толщины и электроноплотности отклоняются под различными углами и попадают в объективную линзу, которая формирует первое полезное увеличение объекта.
После объективной линзы электроны попадают в промежуточную линзу, которая предназначена для плавного изменения увеличения микроскопа и получения дифракции с участков исследуемого образца. Проекционная линза создает конечное увеличенное изображение объекта, которое направляется на флуоресцирующий экран. Благодаря взаимодействию быстрых электронов с люминофором экрана на нем возникает видимое изображение объекта. После наведения резкости сразу проводят фотографирование. Увеличение конечного изображения на экране определяется как произведение увеличений, даваемых объективной, промежуточной и проекционной линзами.