Открытие Вселенной - прошлое, настоящее, будущее - Александр Потупа
Шрифт:
Интервал:
Закладка:
Планетам не слишком повезло, астрофизики гораздо уверенней чувствуют себя, обсуждая происхождение звезд и галактик. Это и неудивительно природа предоставила нам обширнейшую коллекцию гигантских объектов на разных стадиях эволюции, но открыла для непосредственного изучения лишь одну планетную систему.
Современная точка зрения в основном соответствует классическим идеям Канта-Лапласа, но, разумеется, на гораздо более высоком уровне. Принимается во внимание неплохо исследованный химический состав, распределение момента количества движения и магнитное поле. Первичная туманность, из которой по мере сжатия формируются Солнце и планеты, обладает большим вращательным моментом. От туманности отделяются газово-пылевые диски, удаляемые от основной массы магнитным полем. Вращение основной массы несколько тормозится, а вещество дисков постепенно сгущается в планеты. Ситуация такова, что рождающаяся звезда как бы заранее сбрасывает большую часть своего момента будущим планетам — лишь бы правильно работало магнитное поле. В результате основными носителями момента становятся массивные и далекие от центра планеты. В Солнечной системе основная его часть заключена в движении Юпитера и Сатурна.
Видимо, нормальное поведение силовых линий магнитного поля имеет место у не слишком горячих и массивных звезд спектрального класса F5 и ниже. Судя по имеющимся оценкам, их собственное вращение сильно заторможено. Можно думать, что большинство из них обладает планетными системами — иначе куда бы делось 80–90 % такой фундаментальной сохраняющейся величины, как момент импульса? Разумеется, при этом предполагается, что протозвездные облака близкие по массе и составу эволюционизируют одинаково. Данные факты составляют наглядную основу нашей убежденности в множественности планетных миров.
Моделирование сложной задачи планетной космогонии успешно проводится с помощью ЭВМ, которые разыгрывают различные варианты гравитационной конденсации. В основном работа ведется с прицелом на параметры Солнечной системы. Среди решений, представляемых ЭВМ, возникают и такие распределения по массам и расстояниям до Солнца, которые хорошо соответствуют наблюдениям. Наряду с ними встречаются и совсем иные решения — это указывает на разнообразие конкретных вариантов планетной системы, реализующихся у звезд типа Солнца.
Например, протооблако может породить пятнадцатипланетную систему с более или менее равномерным распределением масс между планетами (от 0,06 Мã до 32,7 Мã). В другом варианте едва ли не вся масса протопланетных дисков конденсируется в гигантскую планету (М »5050 Мã » 0,015 М€), расположенную в 11 астрономических единицах от центрального светила. Такая планета, по-видимому, способна стать слабой звездой. Это показывает, что между одиночными звездами с планетной системой и двойной системой звезд нет пропасти. Но, вероятнее всего, парное звездообразование должно охотней идти в ситуации с более массивной начальной туманностью.
Численное моделирование принесло удивительный результат. Оказывается, при весьма правдоподобных условиях вращающееся и сжимающееся протозвездное облако стремится стать не дискообразным, а тороидальным — на определенной стадии оно выглядит, как «бублик», лишенный центральной конденсации. Но такой газовый бублик очень неустойчив и, вероятней всего, быстро фрагментирует на 2 крупных сгустка и несколько мелких. Последующее взаимодействие главных сгустков определяет судьбу облака — оно превращается либо в двойную звездную систему, либо в систему звезды с большой планетой. Последний вариант реализуется в том случае, если один из сгустков входит в режим «вампира», отсасывая атмосферу соседа, а, следовательно, и большую часть его массы. Сгусток-вампир становится протозвездой и как значительно более массивное тело стремится расположиться практически в центре инерции облака. Зато второй сгусток-протопланета отбирает основную часть суммарного момента количества движения, оставляя на долю партнера лишь несколько процентов этого момента. Это очень похоже на наблюдаемую ситуацию с Солнцем и Юпитером. В таком подходе именно двойные звездные системы и звезды с большими планетарными спутниками представляются наиболее распространенным населением Галактики. Пожалуй, самый важный результат исследований по космогоническому моделированию — высокая вероятность формирования планет в процессе рождения звезды.
Завершая этот раздел, необходимо подчеркнуть следующее. Нарисованная здесь картина является в определенной мере усреднением многих моделей. В последние десятилетия космогония развивается необычайно интенсивно. Теория стремится с максимальной точностью объяснить все известные факты, но количество фактов и их взаимосвязей все время растет. Поэтому многие элементы приведенной картины непрерывно переосмысливаются. Факторы, на которые когда-то не обращали должного внимания, нередко выдвигаются на первый план. Скажем, в галактической космогонии существует очень серьезная проблема первичных вихрей. Простое постулирование вращения протогалактических облаков не кажется уже вполне удовлетворительным хотелось бы вывести это важнейшее наблюдаемое явление из каких-то общих космологических принципов. Многое еще не ясно в теории эволюции галактических ядер, да и привычных звезд, особенно в начальной фазе. В этих областях буквально на глазах формируется, пожалуй, самая молодая ветвь астрофизики. Продвигаясь в анализе протозвездной фазы, мы сумеем лучше понять и ранние стадии планетной космогонии. Вообще нельзя не отметить, что даже Солнечная система (не говоря уж о планетных мирах далеких звезд) изучена довольно слабо. После всех открытий прошлых веков, рассмотренных в предыдущей части, это может показаться ученым скромничанием, однако же, это факт.
Попробуем оценить его простейшим образом. Плутон находится в среднем в 40 астрономических единицах от Солнца. О том, что находится за этой экзотической планетой, мы почти ничего не знаем[138].
Между тем, общий размер Солнечной системы не менее 200 тыс. астрономических единиц (порядка 1 парсека). Вплоть до таких расстояний Солнце должно оказывать основное гравитационное влияние на все объекты (на больших расстояниях в игру вмешиваются ближайшие звезды). Так вот, с этой точки зрения неплохо изученный объем составляет (40/200000)3 ~ 8.10–12 примерно одну стомиллиардную часть! За орбитой Плутона могут находиться десятки планет и целые астероидные пояса, более того что-то такое там непременно должно быть, поскольку высокоточная современная теория движения внешних планет (Урана, Нептуна, Плутона) и кометы Галлея все еще находится в неудовлетворительном согласии с наблюдениями. Одна или несколько неоткрытых трансплутоновых планет систематически действуют на параметры известных орбит[139]. Для поиска этих объектов нужно проводить систематические исследования заплутонова пространства на предельно мощных телескопах и в перспективе — с помощью космических зондов. В сфере этих поисков, возможно, кроются ответы на принципиальные проблемы космогонии, в частности, оценка размеров протозвездного облака[140].
Итак, нарисованная картина может заметно измениться во многих деталях, но существуют и совсем иные точки зрения. Например, в течение многих десятилетий советский астрофизик В. А. Амбарцумян и его школа развивают представления, противоположные «пылевой космогонии». Их позиция основана на гипотезе образования космических структур из неких сверхплотных зародышей (сгустков так называемого дозвездного вещества). Структуры должны возникать в результате взрывообразной эволюции зародышей. Наблюдательной основой гипотезы служит высокая активность многих галактических ядер и относительно высокий темп звездообразования. Этот не слишком модный в наши дни подход сыграл важную роль, постоянно привлекая внимание к мощным нестационарным процессам во Вселенной. Однако в идее зародышей заложено несколько больше, чем может показаться. В широком плане речь идет о том, как и когда был дан стартовый выстрел для формирования структур в масштабах, промежуточных между Вселенной в целом и отдельными элементарными частицами. Начался ли этот процесс только после синтеза всех известных частиц, когда они представляли собой уже достаточно охлажденный газ, или он протекал параллельно и оставил после себя совершенно экзотические объекты, прячущиеся в труднодоступных для наблюдения местах типа галактических центров? Вспомним о тех же микрозвездах и реликтовых дырах…
Не исключено, что истина лежит где-то посредине и в очень ранних космогонических фазах активность реликтовых образований действительно крайне важна, а несколько позже основную роль начинают играть более или менее понятные процессы гравитационной конденсации холодного газопылевого вещества.