Большая Советская Энциклопедия (СТ) - БСЭ БСЭ
Шрифт:
Интервал:
Закладка:
. (15)
Коэффициенты В , С и т.д. зависят от температуры и наываются. вторым, третьим и т.д. вириальными коэффициентами. Методы С. ф. позволяют вычислить эти коэффициенты, если известен закон взаимодействия между молекулами газа. При этом коэффициенты В , С ,... описывают одновременное взаимодействие двух, трёх и большего числа молекул. Например, если газ одноатомный и потенциальная энергия взаимодействия его атомов U (r ), то второй вириальный коэффициент равен
. (16)
По порядку величины В равен , где r0 — характерный размер атома, или, точнее, радиус действия межатомных сил. Это означает, что ряд (15) фактически представляет собой разложение по степеням безразмерного параметра Nr3 /V , малого для достаточно разреженного газа. Взаимодействие между атомами газа носит характер отталкивания на близких расстояниях и притяжения на далёких. Это приводит к тому, что В > 0 при высоких температурах и В < 0 при низких. Поэтому давление реального газа при высоких температурах больше давления идеального газа той же плотности, а при низких — меньше. Так, например, для гелия при Т = 15,3 К коэффициент В = — 3×10-23 см3 , а при T = 510 К В = 1,8 ×10-23 см3 . Для аргона В = — 7,1×10-23 см3 при Т = 180 К и В = 4,2×10-23 см3 при Т = 6000 К. Для одноатомных газов вычислены значения вириальных коэффициентов, включая пятый, что позволяет описывать поведение газов в достаточно широком интервале плотностей (см. также Газы ).
Плазма. Особый случай неидеального газа представляет собой плазма — частично или полностью ионизованный газ, в котором поэтому имеются свободные электроны и ионы. При достаточно малой плотности свойства плазмы близки к свойствам идеального газа. При вычислении же отклонений от идеальности существенно, что электроны и ионы взаимодействуют электростатически по закону Кулона. Кулоновские силы медленно убывают с расстоянием, и это приводит к тому, что уже для вычисления первой поправки к термодинамическим функциям необходимо учитывать взаимодействие не двух, а сразу большого количества частиц, поскольку интеграл во втором вириальном коэффициенте (16), описывающий парное взаимодействие, расходится на больших расстояниях r между частицами. В действительности под влиянием кулоновских сил распределение ионов и электронов в плазме изменяется таким образом, что поле каждой частицы экранируется, т. е. быстро убывает на некотором расстоянии, называемом дебаевским радиусом. Для простейшего случая плазмы, состоящей из электронов и однозарядных ионов, дебаевский радиус rD равен:
, (17)
где N число электронов, е — заряд электрона. Все частицы, находящиеся внутри дебаевского радиуса, принимают участие во взаимодействии одновременно. Это приводит к тому, что первая поправка к давлению пропорциональна не (N/V )2 как в обычном газе, а более низкой степени плотности — (N/V )3/2 . Количественный расчёт основан на том, что остальные частицы распределены в поле выбранного электрона или иона согласно распределению Больцмана. В результате уравнение состояния с учётом первой поправки имеет вид:
(18)
(т.к. число электронов равно числу ионов, полное число частиц равно 2N ). Такого же рода поправки возникают и в термодинамических функциях электролитов, в которых имеются свободные ионы растворённых веществ.
Жидкости. В отличие от газа, связанные с взаимодействием члены в уравнении состояния жидкости не малы. Поэтому свойства жидкости сильно зависят от конкретного характера взаимодействия между её молекулами. В теории жидкости вообще отсутствует малый параметр, который можно было бы использовать для упрощения теории. Невозможно получить какие-либо аналитические формулы для термодинамических величин жидкости. Одним из способов преодоления этой трудности является изучение системы, состоящей из сравнительно небольшого числа частиц — порядка нескольких тысяч. В этом случае, используя ЭВМ, можно провести прямое решение уравнений движения частиц и определить таким способом средние значения всех характеризующих систему величин без дополнительных предположений. При этом можно исследовать также и процесс приближения такой системы к состоянию равновесия. Можно также найти статистический интеграл для такой системы из небольшого числа частиц путём вычисления на ЭВМ интегралов в основной формуле для статистического интеграла (обычно при этом используется Монте-Карло метод ). Полученные обоими способами результаты имеют, однако, малую точность в приложении к реальным жидкостям из-за малого числа частиц в системе.
Ещё один способ построения теории жидкости основан на использовании функций распределения молекул. Если проинтегрировать функцию распределения w системы по импульсам всех частиц и по координатам всех частиц, кроме одной, получится одночастичная пространственная функция распределения f1 (r ). Если проинтегрировать w по импульсам всех частиц и по координатам всех частиц, кроме двух, получится двухчастичная функция распределения f2 (r1 , r2 ), всех частиц, кроме трёх, — трёхчастичная функция распределения f3 (r1 , r2 , r3 , ) и т.д. Двухчастичная функция распределения является непосредственно наблюдаемой физической величиной — через неё выражается, например, упругое рассеяние рентгеновских лучей и нейтронов в жидкости. Считая, что функция распределения всей системы даётся распределением Гиббса (6), можно получить интегральное соотношение, выражающее двухчастичную функцию через трёхчастичную и потенциал взаимодействия между частицами. В теории жидкости это точное соотношение дополняется некоторыми приближёнными, выражающими трёхчастичную функцию через двухчастичную (одночастичная функция в однородной жидкости сводится к постоянной). В результате получается уравнение для двухчастичной функции, которое решается численно. Дополнительные соотношения находятся на основании правдоподобных физических соображений и носят интерполяционный характер, так что основанные на них теории могут претендовать лишь на качественное описание свойств жидкости. Тем не менее даже такое качественное описание имеет важное значение, поскольку в нём проявляется общность законов С. ф. (см. также Жидкость ).
Химическое равновесие. Большое значение имеет предоставляемая С. ф. возможность вычисления констант химического равновесия, определяющих равновесные концентрации реагирующих веществ. Термодинамическая теория приводит к условию равновесия в виде равенства нулю некоторой линейной комбинации химических потенциалов этих веществ. В случае реакции между газами химические потенциалы определяются формулами, аналогичными формуле (14) для одноатомного газа, и константу равновесия можно вычислить, если известна теплота реакции. В выражения для химических потенциалов входит постоянная Планка, поэтому квантовые эффекты существенны даже для реакций между классическими газами. Важным частным случаем формул химического равновесия является Саха формула , определяющая равновесную степень ионизации газа. (Подробнее см. Равновесие химическое .)
Вырожденные газы. Если понижать температуру газа при постоянной плотности, начинают проявляться квантово-механические эффекты, связанные со свойствами симметрии волновых функций системы одинаковых частиц. Газ «вырождается» (см. Вырожденный газ ). Для частиц с полуцелым спином волновая функция должна менять знак при перестановке любой пары частиц. Это, в частности, приводит к тому, что в одном квантовом состоянии не может находиться больше одной частицы (Паули принцип ). Количество частиц с целым спином в одном состоянии может быть любым, но требуемая в этом случае неизменность волновой функции при перестановке частиц и здесь приводит к изменению статистических свойств газа. Частицы с полуцелым спином описываются статистикой Ферми — Дирака; их называют фермионами . К фермионам относятся, например, электроны, протоны, нейтроны, атомы дейтерия, атомы лёгкого изотопа гелия 3 Не. Частицы с целым спином — бозоны — описываются статистикой Бозе — Эйнштейна. К ним относятся атомы водорода, атомы 4 Не, кванты света — фотоны .