Категории
Самые читаемые
RUSBOOK.SU » Бизнес » Маркетинг, PR, реклама » Маркетинг, основанный на данных. 15 показателей, которые должен знать каждый - Марк Джеффри

Маркетинг, основанный на данных. 15 показателей, которые должен знать каждый - Марк Джеффри

Читать онлайн Маркетинг, основанный на данных. 15 показателей, которые должен знать каждый - Марк Джеффри

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 62 63 64 65 66 67 68 69 70 ... 90
Перейти на страницу:

Чтобы в компании применялся маркетинг, основанный на данных, команда аналитиков должна была привлечь на свою сторону и менеджмент, и маркетеров. Однако всем им было сложно понять наши принципы регрессионного моделирования. Многим маркетерам такой анализ казался неудобным, и поэтому они им не пользовались. Чтобы все начали пользоваться этим инструментом, нужно его упростить.

Сэм Макфол, старший менеджер EarthLink по вопросам бизнес-аналитики, добавил:

Более ранние модели прогнозов, основанные на логистической регрессии, не получили признания в организации, потому что маркетерам и менеджерам по продукту было сложно визуализировать полученные результаты. Когда же мы перешли к моделированию с помощью дерева решений, идеи сразу стали более наглядными, а после нескольких внутренних обучающих семинаров и запуска пилотных программ сотрудники начали активно использовать наши модели.

Дерево решений – один из трех основных методов анализа данных. Два других – кластерный анализ и нейронные сети{49}. Детали этих алгоритмов интересны «ботаникам» вроде меня, но большинству маркетеров они покажутся очень скучными. Однако для использования самих моделей все подробности не нужны.

Что же такое дерево решений с точки зрения анализа данных? Суть его в том, чтобы последовательно разделять набор данных на более «чистые» подгруппы, имеющие четко определенные характеристики. По сути, мы хотим просеять данные сквозь сито; в результате образуются две группы{50} – прошедшие и не прошедшие отбор.

Представьте себе кучу зеленых и синих шариков. Если ваш фильтр разделяет эти два цвета, то в итоге вы получите две кучки шариков – синие отдельно, зеленые отдельно. Каждая из них будет более «чистой» с точки зрения цвета, чем изначальный набор. Затем мы можем повторить тот же процесс с использованием других переменных и т. д. В итоге набор данных превратится в своеобразное дерево с «листьями» (синими и зелеными), соединенными ветвями (связями).

Поясню на примере. На рис. 9.3 показано, как компания EarthLink произвела первое разделение данных при создании дерева решений в программе SAS Enterprise Miner{51}. Общее множество – клиенты, пользующиеся DSL, и для начала компания разделила их на группы позвонивших в колл-центр и задавших вопрос «Можете ли вы подключить мне широкополосный доступ?» (левая ветвь) и не сделавших этого (правая ветвь). Обратите внимание, что триггером события выступает звонок в сервисный центр с вопросом «Можете ли вы подключить мне услугу?».

В верхней части дерева решений приведены данные о двух группах клиентов: 5,2 % клиентов, пользующихся коммутируемым доступом, отказываются от услуг в течение 60 дней, а 94,9 % остаются. Однако среди тех, кто звонил в компанию (первое разветвление в левой части дерева), заметна большая разница в показателе оттока: 12,8 % (по сравнению с 42 % не звонивших, см. второй набор ячеек на рис. 9.3). Иными словами, клиенты, звонящие в компанию и узнающие, могут ли они пользоваться широкополосным доступом, имеют в 2,5 раза больше шансов отказаться от услуг компании, чем вся совокупность клиентов (для расчета этого показателя достаточно разделить 12,8 % на 5,2 %) – это ветвь с «высоким коэффициентом оттока». Правая ветвь – ветвь с «низким коэффициентом оттока»: клиенты, которые не обращались с запросом о предоставлении услуг широкополосного доступа, на 20 % (4,2 % / 5,2 %) реже склонны расставаться с компанией (по сравнению со всей клиентской базой).

Дерево решений можно рассматривать и как способ подробной сегментации клиентов, основанной на широком наборе переменных, включая события. Самый важный вопрос для маркетинга в данном случае – «Почему коэффициент оттока для этих двух групп так различается?». Иными словами, почему коэффициент оттока в левой части дерева настолько выше, чем в правой? Ответ прост: клиенты, интересующиеся возможностью широкополосного доступа, активно ищут возможность получить более продвинутые услуги.

На третьем уровне клиенты подразделяются на еще более мелкие группы: правая (не обращавшиеся с запросом) делится на подгруппы в зависимости от использования сервиса WebMail, а именно количества почтовых ящиков на WebMail. Группа, расположенная слева (клиенты, обращавшиеся с запросом, в том числе и несколько раз), делится в зависимости от переменной, связанной с частотой использования услуг: количеством сеансов связи за месяц. Алгоритм создания дерева показал, что именно количество ящиков WebMail – лучший критерий для разделения на группы клиентов, относительно удовлетворенных коммутируемым доступом, а количество сессий лучше всего подходит для разделения на подгруппы клиентов, планирующих переход на широкополосный доступ.

Вторая развилка позволяет нам лучше понять причины оттока. Слева – клиенты, обращавшиеся с запросом, но редко пользующиеся услугами (менее 9,5 сеансов связи в месяц), на 338 % (17,6 % / 5,2 %) чаще склонны расстаться с компанией, чем основная масса клиентов. Они прицениваются к разным предложениям на рынке и не удовлетворены услугами коммутируемого доступа; именно на них надо нацеливать кампании маркетинга вовлеченности и лояльности. Для клиентов в той же ветви (обратившиеся с запросом), пользующихся услугами чаще (более 9,5 сеансов связи в месяц), вероятность расставания только на 160 % (8,3 % / 5,2 %) выше, чем в среднем по выборке.

Рис. 9.3. Дерево решений SAS Enterprise Miner для компании EarthLink

В каждой ячейке приведена доля клиентов, которые остаются с компанией (0) и расстаются с ней (1) в течение 60 дней, а N – количество клиентов в каждой группе

Источник: Сэм Макфол, EarthLink

Для клиентов, не обращавшихся с запросом о предоставлении услуг широкополосного доступа (правое ответвление на рис. 9.3), самая важная переменная – количество почтовых ящиков на WebMail. Клиенты, у которых нет ящиков (один ящик на двоих или более пользователей не считается), больше склонны к уходу по сравнению с общей базой (5,7 % против 5,2 %). Низкая вовлеченность приводит к высокому оттоку. Для клиентов с одним или несколькими ящиками на WebMail вероятность ухода практически наполовину ниже показателя для клиентской базы в целом (2,8 % в сравнении с 5,2 %). Они не ищут услуги широкополосного доступа на рынке и «привязаны» к электронной почте.

Дерево позволяет понять, на чем стоит сосредоточить маркетинговые усилия по удержанию клиентов: клиенты, которые обращаются с запросом и при этом редко пользуются услугами компании (мало сеансов связи в месяц), имеют самый высокий показатель оттока. По словам Стюарта Роузела: «Не стоит ждать, что клиенты перестанут размышлять о переходе на широкополосный доступ, однако вы можете снизить отток за счет нацеленных маркетинговых усилий, побуждающих их чаще пользоваться EarthLink и электронной почтой».

1 ... 62 63 64 65 66 67 68 69 70 ... 90
Перейти на страницу:
На этой странице вы можете бесплатно скачать Маркетинг, основанный на данных. 15 показателей, которые должен знать каждый - Марк Джеффри торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит