Фармакологическая помощь спортсмену: коррекция факторов, лимитирующих спортивный результат - Олег Кулиненков
Шрифт:
Интервал:
Закладка:
Оказывает жиромобилизующее действие, конкурентно вытесняя глюкозу, включая жирнокислотный метаболический шунт, активность которого не лимитирована кислородом (в отличие от аэробного гликолиза), поэтому эффективен при острой гипоксии мозга и других критических состояниях.
Снижает избыточную массу тела и уменьшает содержание жира в мышцах. В плазме крови взрослых и детей старшего возраста эндогенный карнитин обнаруживается в концентрации 50 мкмоль/л.
Оказывает анаболическое действие, замедляет основной обмен и распад белковых и углеводных молекул.
При приеме внутрь хорошо всасывается, уровень в плазме достигает максимума через 3 ч и сохраняется в терапевтической концентрации в течение 9 ч. При в/м введении обнаруживается в плазме в течение 4 ч. Легко проникает в печень и миокард, медленнее – в мышцы. Выводится почками. Вызывает незначительное угнетение ЦНС.
Липоевая кислота. Активирует окислительное декарбоксилирование, регулирует липидный и углеводный обмен, в том числе метаболизм холестерина, пировиноградной кислоты и альфа-кетокислоты. Улучшает функции печени (в том числе детоксикационную), защищает ее от действия экзо– и эндогенных повреждающих факторов.
Возможны аллергические реакции.
Усиливает эффект сахароснижающих препаратов.
Активность ослабляется алкоголем.
Липамид (амид липоевой кислоты) близок по действию к ли-поевой кислоте. Препарат переносится лучше, чем липоевая кислота.
Метионин (незаменимая аминокислота) способствует синтезу холина, за счет чего нормализует синтез фосфолипидов из жиров и уменьшает отложение в печени нейтрального жира. Метионин участвует в синтезе адреналина, креатина, активирует действие ряда гормонов, ферментов, цианокобаламина, аскорбиновой, фо-лиевой кислот. Обезвреживает некоторые токсичные вещества путем метилирования.
В качестве регуляторов липидного обмена применяются А, В2, В6, В, В5, С, Вс, хром, инозитол, вобэнзим, бетаин.
2. Клеточное дыхание работающих мышц
Гипоксия
Гипоксия тканей (кислородная недостаточность) – широко распространенное явление, встречающееся в результате неблагоприятных изменений в окружающей среде, при различных патологических состояниях, а также при тренировочном процессе.
Причины появления гипоксии могут быть различными, но ответная реакция организма носит неспецифический характер и в своем развитии проходит несколько стандартных фаз. На каждой из них происходит последовательное урезание энергетических возможностей. Поэтапное выключение фрагментов дыхательной цепи по мере снижения содержания кислорода в тканях является приспособительной реакцией организма на быстро ухудшающиеся условия среды. Снижение энергопродуцирующих функций клеток до определенного предела имеет обратимый характер, но при интенсивном развитии гипоксии или значительной ее продолжительности изменения приобретают необратимый характер. Знание механизмов повреждения тканей при гипоксии необходимо для наиболее эффективной коррекции этого патологического состояния.
Митохондрии – субклеточные элементы, в которых совершаются основные энергопреобразующие процессы. В последние годы активно разрабатывается новая область медицины – митохондри-альная. Установлено, что более 100 заболеваний вызваны различными нарушениями функционирования митохондрий.
Сегодня устройство митохондриальной дыхательной цепи и механизм ее работы обсуждаются с единых позиций во всех авторитетных изданиях, а четверть века назад на научных конференциях шли ожесточенные споры между представителями различных школ биоэнергетиков.
Английским биохимиком Питером Митчеллом (Mitchell P., 1961) предложена хемиосмотическая гипотеза.
Известно, что окисление дыхательных субстратов кислородом катализируется дыхательными ферментами, расположенными во внутренней мембране митохондрий. По данной гипотезе окисление субстрата ферментом – акцептором электронов – происходит на одной из сторон мембраны. В результате этой реакции электрон присоединяется к ферменту и образовавшийся протон высвобождается из мембраны и уходит в воду. Затем электрон переносится ферментом на другую сторону мембраны, и там он восстанавливает кислород или другой фермент, проявляющий акцепторные свойства к электрону. При восстановлении кислорода или фермента происходит связывание протонов по другую сторону мембраны.
По хемиосмотической гипотезе в процессе дыхания происходит направленный перенос протонов из одного отсека в другой, а разделительная мембрана препятствует восстановлению равновесия между отсеками. Концентрирование протонов по одну сторону мембраны в процессе дыхания представляет собой осмотическую работу по переносу ионов в пространстве против градиента их концентрации. В процессе окисления субстрата и восстановления кислорода совершается также химическая работа.
Главная отличительная особенность мембранных окислительных процессов, подмеченная Митчеллом, заключается в одновременном выполнении двух видов работ – химической и осмотической. Эта особенность и определила название выдвинутой гипотезы.
По этой гипотезе образование АТФ в процессе окислительного расщепления субстрата происходит следующим образом: осмотическая энергия, накопленная в виде разности концентраций протонов между двумя отсеками, разделенными мембраной, расходуется на химическую работу, т е. на синтез АТФ.
Гениальное изобретение природы – система митохондриального окисления субстрата – выполняет не только осмотическую и химическую, но и электрическую работу. Выбрасывая из одного резервуара однозарядные ионы и перенося их через мембрану в другой резервуар, такая система осуществляет зарядку биологической мембраны как электрического конденсатора, когда по разные стороны мембраны концентрируются ионы с противоположными зарядами.
Получил неопровержимое подтверждение фундаментальный факт (Скулачев В.П.), вытекающий из хемиосмотической гипотезы, что сопряжение процессов дыхания и фосфорилирования возможно только при наличии целостной мембраны, надежно разделяющей разнозарядные ионы в своих отсеках. При повреждении мембран различными веществами (в том числе оксидантами) синтез АТФ прекращается.
Основные энергопреобразующие процессы совершаются в митохондриях. Поломка отдельных элементов в этой структуре ведет к нарушению энергетического гомеостаза с серьезными последствиями для клетки, органа или организма в целом. Группа ферментов, локализованная по внутренней мембране митохондрий и участвующая в процессах биотрансформации энергии, получила название дыхательной цепи (см. рис. 3).
Рис. 3. Упрощенная схема работы дыхательной цепи
Принято считать, что митохондриальная цепь состоит из четырех групп ферментов и белков, компактно локализованных во внутренней мембране митохондрий (Рубин А., Шинкарев В.П.). Подобные группы ферментов принято называть комплексами. Перенос восстановительных эквивалентов от комплекса к комплексу может быть реализован только с использованием низкомолекулярных переносчиков, способных участвовать в окислительно-восстановительных реакциях. Подобных переносчиков в организме известно два: убихинон, цитохром С.
Убихинон обеспечивает связь между комплексом I и II, цитохром С – между III и IV.
Важно отметить, что хотя оба переносчика выполняют сходные функции в общей мембране митохондрии, их работа организована таким образом, что они не мешают друг другу. Убихинон функционирует в толще мембраны, а цитохром С мигрирует по наружной ее поверхности. Пространственное разделение обоих потоков позволяет исключить случаи транспортного хаоса.
В качестве энергетического субстрата комплекс I использует НАНД (никотинамидадениндинуклеотид), образующийся в процессах как аэробного, так и анаэробного окисления субстратов. Комплекс II катализирует реакции окисления сукцината, образующегося в цикле трикарбоновых кислот (цикл Кребса).
Кислород является субстратом митохондриальной дыхательной цепи. Дефицит кислорода ведет к ограничению, а при полном прекращении его поступления в организм к быстрой дезорганизации работы дыхательной цепи, ее мультиферментной системы. Главным результатом в этом случае становится истощение клеточных запасов макроэргов и повреждение энергопребразующих механизмов. Такую гипоксию в настоящее время принято называть биоэнергетической. При нарушении энергетических потоков наступает состояние гипоксии тканей.
В зависимости от причин, вызывающих энергетический дефицит, различают четыре вида гипоксии. По сути, биоэнергетическая гипоксия – обязательный этап в каждом из четырех типов.