Большая Советская Энциклопедия (ГЕ) - БСЭ БСЭ
Шрифт:
Интервал:
Закладка:
Генераторы с ТД могут генерировать колебания вплоть до частот 100 Ггц, но с весьма малой мощностью — порядка долей мквт. На дециметровых и сантиметровых волнах мощность таких генераторов может достигать нескольких мвт. Они, будучи чрезвычайно компактными и экономичными, наиболее успешно применяются в качестве гетеродинов в радиоприёмниках СВЧ диапазона. Полупроводниковые генераторы (как и ламповые) не могут генерировать очень высокие частоты (в области сантиметровых и более коротких волн). В этой области частот используются, как правило, устройства с объёмными резонаторами (вместо контуров).
Большинство приведённых ранее понятий (активный элемент, пассивные цепи, отрицательное сопротивление и др.) в полной мере применимо лишь к устройствам, состоящим из сосредоточенных элементов (лампа, сопротивление, конденсатор, катушка индуктивности и т. д.), размеры которых много меньше длины волны l. Продвижение в область СВЧ привело к созданию генераторов, представляющих собой системы с распределёнными параметрами. В этих устройствах для Г. э. к. используются различные явления, возникающие в электронных потоках в вакууме, в плазме или при прохождении тока через некоторые твёрдые тела, например полупроводники. В этих случаях не всегда применимо само понятие электрической цепи и невозможно выделять раздельно пассивные цепи и активный элемент.
Магнетронный генератор. В магнетронном генераторе колебания СВЧ возбуждаются в системе объёмных резонаторов (полости с проводящими стенками). Резонаторы расположены по окружностям массивного анода и их собственная частота (определяется диаметром полости и шириной щели, соединяющей каждую полость с общим пространством, в центре которого расположен катод (рис. 9). Магнитное поле, искривляя траектории электронов, движущихся от катода К к аноду А, формирует общий электронный поток, пролетающий последовательно вдоль щелей резонаторов. Магнитное поле подбирается таким, чтобы большинство электронов двигалось по траекториям, почти касающимся щелей. Т. к. в резонаторах за счёт случайных токов неизбежно возникают слабые электрические колебания, то около щелей существуют слабые переменные электрические поля Е. Пролетая в этих полях, электроны в зависимости от их направления относительно поля Е либо ускоряются, отбирая энергию у резонатора, либо тормозятся, отдавая часть энергии резонаторам. Электроны, ускоренные полем первого же резонатора, возвращаются на катод. Заторможенные (рабочие) электроны попадают в поле следующих резонаторов, где они также будут тормозиться, если попадают туда в «тормозящие» полупериоды электромагнитного поля. Путём соответствующего подбора скорости электронов (анодного напряжения Ua и магнитного поля Н) можно добиться того, чтобы электроны больше отдавали энергии резонаторам, чем забирали у них. Тогда колебания в резонаторах будут нарастать. Нелинейность характеристик магнетрона обеспечивает установление постоянной амплитуды генерируемых колебаний. Отбор энергии может производиться из любого резонатора с помощью петли связи П.
В магнетроне источником питания является источник анодного напряжения Ua, колебательной системой — резонаторы. Роль активного элемента, обеспечивающего преобразование постоянной энергии в энергию электрических колебаний, играет электронный поток, находящийся под действием магнитного поля.
Магнетроны генерируют гармонические колебания в диапазоне частот от 300 Мгц до 300 Ггц. Кпд магнетронных генераторов достигает 85%. Обычно магнетроны используются для получения колебаний больших мощностей (несколько Мвт) в импульсном режиме и десятков квт при непрерывной генерации (подробнее см. Магнетрон).
Клистронный генератор. Клистронный генератор также содержит объёмный резонатор, в котором колебания возбуждаются и поддерживаются электронным потоком. Поток электронов, испускаемый катодом К (рис. 10, а), ускоряется электрическим полем, создаваемым источником питания. В отражательном клистроне электроны пролетают через сетки объёмного резонатора С и, не достигая анода А, потенциал которого отрицателен относительно сеток резонатора, отражаются, пролетают через резонатор в обратном направлении и т. д. Если бы электроны пролетали через резонатор сплошным потоком, то в течение одного полупериода колебаний резонатора они отдавали бы резонаторам энергию, а в течение второго полупериода отнимали бы это же количество энергии у резонатора, и Г. э. к. было бы невозможно. Если же электроны влетают в резонатор отдельными «сгустками», причём в такие моменты, когда резонатор их тормозит, то они отдают резонатору энергии больше, чем забирают у него. При этом электронный поток усиливает возникшие в резонаторе случайные колебания и поддерживает их с постоянной амплитудой. Т. к. группирование электронного потока в сгустки происходит за время, соответствующее нескольким периодам колебаний, то протяжённость «пространства группировки» задаётся скоростью электронов и частотой генерируемых колебаний. Благодаря этому наибольшее распространение клистронные генераторы имеют в сантиметровом и миллиметровом диапазонах длин волн. Мощность клистронов невелика — от нескольких мвт в миллиметровом диапазоне до нескольких вт в сантиметровом. Мощность двухрезонаторных пролётных клистронных генераторов (рис. 10, б) в сантиметровом диапазоне может составлять десятки вт (подробнее см. Клистрон).
Квантовые пучковые генераторы. В квантовых генераторах роль высокодобротной колебат. системы выполняют возбуждённые атомы или молекулы активного вещества. Переходя из возбуждённого состояния в невозбуждённое, они излучают порции (кванты) электромагнитной энергии, равные hv, где h — Планка постоянная, v — частота электромагнитных колебаний, характерная для данного сорта атомов. Источником энергии являются возбуждённые атомы и молекулы, а для отбора возбуждённых молекул служит сортирующая система. Например, в молекулярном генераторе на аммиаке источником питания является источник молекулярного пучка аммиака. Объёмный резонатор, в котором находится активное вещество, осуществляет обратную связь, вызывая с помощью электромагнитного поля вынужденное излучение молекул и вложение колебательной энергии, компенсирующее потери, включая отбор энергии во вне. Аммиачный генератор работает на частоте 23,870 Ггц с весьма стабильной и узкой спектральной линией генерируемых колебаний за счёт высокой добротности квантового перехода. Высокая стабильность частоты колебаний, генерируемых квантовыми генераторами в радиодиапазоне (на аммиаке, водороде, синильной кислоте и др.), позволяет использовать их как квантовые стандарты частоты.
Релаксационные генераторы. Существует широкий класс генераторов, у которых пассивные цепи, где возбуждаются и поддерживаются колебания, не обладают колебательными свойствами (контуры с большими потерями и др. апериодические цепи, например комбинации ёмкостей С и сопротивлений R или индуктивностей L и сопротивлений R). В подобных генераторах за каждый период колебаний теряется и вновь пополняется значительная часть всей колебательной энергии. Период генерируемых колебаний при этом определяется временем релаксации (процесса установления равновесия) в этих цепях. Такие генераторы называют релаксационными. В этом случае форма колебаний определяется совместно свойствами колебательных цепей и активного элемента и может быть весьма разнообразной — от скачкообразных, почти разрывных колебаний (например, мультивибраторы) до колебаний, сколь угодно близких к гармоническим (RC-генераторы синусоидальных колебаний). Эта особенность релаксационных генераторов широко используется для получения электрических колебаний специальной формы, например прямоугольных импульсов, пилообразного напряжения (рис. 11) и тока, а также для генерации гармонических колебаний звуковой и сверхнизкой частот.
Тиратронный генератор пилообразного напряжения — простейший релаксационный генератор (рис. 12, а). У тиратрона напряжение зажигания выше напряжения гашения. Его напряжение U изменяется практически линейно со временем до некоторого максимального значения, а затем достаточно быстро падает до начальной величины (рис. 11). Т. к. вольтамперная характеристика тиратрона обладает падающим участком характеристики (рис. 12, б), то процесс зарядки ёмкости С до напряжения зажигания тиратрона происходит медленно, после чего накопленный на ёмкости заряд быстро разряжается через тиратрон; напряжение на нём падает до значения, при котором тиратрон гаснет. При этом внутреннее сопротивление тиратрона становится большим, в результате чего зарядка ёмкости С повторяется, и т. д. Период колебаний определяется временем зарядки и разрядки ёмкости, т. е. временем релаксации цепи RC.