Архитектура операционной системы UNIX - Морис Бах
Шрифт:
Интервал:
Закладка:
7.2.1 Обработка сигналов
Ядро обрабатывает сигналы в контексте того процесса, который получает их, поэтому чтобы обработать сигналы, нужно запустить процесс. Существует три способа обработки сигналов: процесс завершается по получении сигнала, не обращает внимание на сигнал или выполняет особую (пользовательскую) функцию по его получении. Реакцией по умолчанию со стороны процесса, исполняемого в режиме ядра, является вызов функции exit, однако с помощью функции signal процесс может указать другие специальные действия, принимаемые по получении тех или иных сигналов.
Синтаксис вызова системной функции signal:
oldfunction = signal(signum, function);
где signum — номер сигнала, при получении которого будет выполнено действие, связанное с запуском пользовательской функции, function — адрес функции, oldfunction — возвращаемое функцией значение. Вместо адреса функции процесс может передавать вызываемой процедуре signal числа 1 и 0: если function = 1, процесс будет игнорировать все последующие поступления сигнала с номером signum (особый случай, связанный с игнорированием сигнала «гибель потомка», рассматривается в разделе 7.4), если = 0 (значение по умолчанию), процесс по получении сигнала в режиме ядра завершается. В пространстве процесса поддерживается массив полей для обработки сигналов, по одному полю на каждый определенный в системе сигнал. В поле, соответствующем сигналу с указанным номером, ядро сохраняет адрес пользовательской функции, вызываемой по получении сигнала процессом. Способ обработки сигналов одного типа не влияет на обработку сигналов других типов.
алгоритм psig /* обработка сигналов после проверки их существования */
входная информация: отсутствует
выходная информация: отсутствует
{
выбрать номер сигнала из записи таблицы процессов;
очистить поле с номером сигнала;
if (пользователь ранее вызывал функцию signal, с помощью которой сделал указание игнорировать сигнал данного типа)
return;
if (пользователь указал функцию, которую нужно выполнить по получении сигнала) {
из пространства процесса выбрать пользовательский виртуальный адрес функции обработки сигнала;
/* следующий оператор имеет нежелательные побочные эффекты */
очистить поле в пространстве процесса, содержащее адрес функции обработки сигнала;
внести изменения в пользовательский контекст:
искусственно создать в стеке задачи запись, имитирующую обращение к функции обработки сигнала;
внести изменения в системный контекст:
записать адрес функции обработки сигнала в поле счетчика команд, принадлежащее сохраненному регистровому контексту задачи;
return;
}
if (сигнал требует дампирования образа процесса в памяти) {
создать в текущем каталоге файл с именем «core»;
переписать в файл «core» содержимое пользовательского контекста;
}
немедленно запустить алгоритм exit;
}
Рисунок 7.8. Алгоритм обработки сигналов
Обрабатывая сигнал (Рисунок 7.8), ядро определяет тип сигнала и очищает (гасит) разряд в записи таблицы процессов, соответствующий данному типу сигнала и установленный в момент получения сигнала процессом. Если функции обработки сигнала присвоено значение по умолчанию, ядро в отдельных случаях перед завершением процесса сбрасывает на внешний носитель (дампирует) образ процесса в памяти (см. упражнение 7.7). Дампирование удобно для программистов тем, что позволяет установить причину завершения процесса и посредством этого вести отладку программ. Ядро дампирует состояние памяти при поступлении сигналов, которые сообщают о каких-нибудь ошибках в выполнении процессов, как например, попытка исполнения запрещенной команды или обращение к адресу, находящемуся за пределами виртуального адресного пространства процесса. Ядро не дампирует состояние памяти, если сигнал не связан с программной ошибкой. Например, прерывание, вызванное нажатием клавиш «delete» или «break» на терминале, имеет своим результатом посылку сигнала, который сообщает о том, что пользователь хочет раньше времени завершить процесс, в то время как сигнал о «зависании» является свидетельством нарушения связи с регистрационным терминалом. Эти сигналы не связаны с ошибками в протекании процесса. Сигнал о выходе (quit), однако, вызывает сброс состояния памяти, несмотря на то, что он возникает за пределами выполняемого процесса. Этот сигнал, обычно вызываемый одновременным нажатием клавиш ‹Ctrl/|›, дает программисту возможность получать дамп состояния памяти в любой момент после запуска процесса, что бывает необходимо, если процесс попадает в бесконечный цикл выполнения одних и тех же команд (зацикливается).
Если процесс получает сигнал, на который было решено не обращать внимание, выполнение процесса продолжается так, словно сигнала и не было. Поскольку ядро не сбрасывает значение соответствующего поля, свидетельствующего о необходимости игнорирования сигнала данного типа, то когда сигнал поступит вновь, процесс опять не обратит на него внимание. Если процесс получает сигнал, реагирование на который было признано необходимым, сразу по возвращении процесса в режим задачи выполняется заранее условленное действие, однако прежде чем перевести процесс в режим задачи, ядро еще должно предпринять следующие шаги:
1. Ядро обращается к сохраненному регистровому контексту задачи и выбирает значения счетчика команд и указателя вершины стека, которые будут возвращены пользовательскому процессу.
2. Сбрасывает в пространстве процесса прежнее значение поля функции обработки сигнала и присваивает ему значение по умолчанию.
3. Создает новую запись в стеке задачи, в которую, при необходимости выделяя дополнительную память, переписывает значения счетчика команд и указателя вершины стека, выбранные ранее из сохраненного регистрового контекста задачи. Стек задачи будет выглядеть так, как будто процесс произвел обращение к пользовательской функции (обработки сигнала) в той точке, где он вызывал системную функцию или где ядро прервало его выполнение (перед опознанием сигнала).
4. Вносит изменения в сохраненный регистровый контекст задачи: устанавливает значение счетчика команд равным адресу функции обработки сигнала, а значение указателя вершины стека равным глубине стека задачи.
Таким образом, по возвращении из режима ядра в режим задачи процесс приступит к выполнению функции обработки сигнала; после ее завершения управление будет передано на то место в программе пользователя, где было произведено обращение к системной функции или произошло прерывание, тем самым как бы имитируется выход из системной функции или прерывания.
В качестве примера можно привести программу (Рисунок 7.9), которая принимает сигналы о прерывании (SIGINT) и сама посылает их (в результате выполнения функции kill). На Рисунке 7.10 представлены фрагменты программного кода, полученные в результате дисассемблирования загрузочного модуля в операционной среде VAX 11/780. При выполнении процесса обращение к библиотечной процедуре kill имеет адрес (шестнадцатеричный) ee; эта процедура в свою очередь, прежде чем вызвать системную функцию kill, исполняет команду chmk (перевести процесс в режим ядра) по адресу 10a. Адрес возврата из системной функции — 10c. Во время исполнения системной функции ядро посылает процессу сигнал о прерывании. Ядро обращает внимание на этот сигнал тогда, когда процесс собирается вернуться в режим задачи, выбирая из сохраненного регистрового контекста адрес возврата 10c и помещая его в стек задачи. При этом адрес функции обработки сигнала, 104, ядро помещает в сохраненный регистровый контекст задачи. На Рисунке 7.11 показаны различные состояния стека задачи и сохраненного регистрового контекста.
В рассмотренном алгоритме обработки сигналов имеются некоторые несоответствия. Первое из них и наиболее важное связано с очисткой перед возвращением процесса в режим задачи того поля в пространстве процесса, которое содержит адрес пользовательской функции обработки сигнала. Если процессу снова понадобится обработать сигнал, ему опять придется прибегнуть к помощи системной функции signal. При этом могут возникнуть нежелательные последствия: например, могут создаться условия для конкуренции, если второй раз сигнал поступит до того, как процесс получит возможность запустить системную функцию. Поскольку процесс выполняется в режиме задачи, ядру следовало бы произвести переключение контекста, чтобы увеличить тем самым шансы процесса на получение сигнала до момента сброса значения поля функции обработки сигнала.