Новая Физика Веры - Виталий Тихоплав
Шрифт:
Интервал:
Закладка:
В своей книге «Оптика» Ньютон писал:
Мне кажется вероятным, что Бог вначале сотворил материю в виде твердых, обладающих массой, цельных, непроницаемых и подвижных частиц, наделенных такими размерами, пропорциями, формами и другими качествами, которые наилучшим образом отвечают той цели, для которой Он сотворил их, и что эти частицы, будучи цельными, несравненно плотнее любого пористого тела, из них составленного; и они настолько плотны, что никогда не изнашиваются и не разбиваются, и ни одна сила не может разделить то, что Бог сотворил единым при своем первотворении (3).
Для того чтобы дать строгое математическое описание силы тяжести или гравитации, вызывающей взаимное притяжение материальных частиц, Ньютон использовал абсолютно новые понятия и математические операции дифференциального исчисления. Ньютоновские уравнения движения – основы классической механики. Считалось, что они отражают незыблемые законы, управляющие движением материальных частиц, а значит, и всеми природными явлениями. По мнению Ньютона, Бог создал материальные частицы, силы между ними и фундаментальные законы движения. Таким образом, вся Вселенная была запущена в движение и движется до сих пор подобно хорошо отлаженному механизму.
Сам Ньютон при помощи своей теории объяснил движение планет и основные свойства Солнечной системы. Тем не менее его планетарная модель была сильно упрощенной и не учитывала, например, гравитационного взаимодействия планет. Из-за этого Ньютон обнаружил в своей модели некоторые несообразности, которые он сам не мог объяснить. Однако он решил проблему достаточно просто, придя к выводу, что Бог всегда присутствует во Вселенной и исправляет эти несообразности.
Итак, основными постулатами модели Ньютона являются:
1. Пространство и время Вселенной абсолютны, но они не зависят от материальных объектов и процессов.
2. Пространство и время метрически бесконечны, однородны (свойства одинаковы во всех точках) и изотропны (независимость свойств физических объектов от назначения).
3. Вселенная стационарна, не претерпевает эволюции. Изменяются системы, но не мир в целом.
Парадоксы модели:
1. Гравитационный: если Вселенная бесконечна, с бесконечным числом небесных тел, то сила тяготения будет бесконечно большой и Вселенная в результате должна сколлапсировать.
2. Фотометрический: если существует бесконечное число небесных тел, то должна быть бесконечная светимость неба, а этого нет.
Великий математик Лаплас поставил перед собой честолюбивую задачу: уточнить и усовершенствовать подсчеты Ньютона «и предложить окончательное описание механики Солнечной системы и настолько приблизить теорию к наблюдениям, чтобы в астрономических таблицах не осталось белых пятен».
Результатом его усилий была большая работа в пяти томах, «Небесная механика», в которой Лаплас успешно и подробно описал движение планет, лун и комет, причины приливов и других гравитационных явлений. Опираясь на ньютоновские законы движения, он показал, что Солнечная система неподвижна. Когда Лаплас продемонстрировал Наполеону первое издание своей книги, тот, как рассказывают, заметил: «Месье Лаплас, мне сказали, что этот грандиозный труд об устройстве Вселенной не содержит ни одного упоминания о Творце». На что Лаплас резко ответил: «Сир, я не нуждаюсь в этой гипотезе».
Вдохновленные блестящим успехом ньютоновской механики в астрономии, физики использовали ее для описания непрерывного течения жидкостей и колебаний упругих тел и вновь добились успеха. Даже теория теплоты получила механистическое обоснование, согласно которому теплота представляет собой энергию, порожденную сложным хаотическим движением молекул вещества. Так, при повышении температуры воды подвижность молекул возрастает до тех пор, пока они не преодолеют силы взаимного притяжения и не разделятся. При этом вода превращается в пар. Напротив, при охлаждении термическое движение замедляется, между молекулами возникает более прочная связь и образуется лед. Подобным же образом можно с чисто механической точки зрения объяснить много других температурных явлений.
Ньютоновская механика пережила свой расцвет в XVIII–XIX веках. Триумф механики Ньютона убедил физиков в том, что ее законы управляют движением всей Вселенной и являются основными законами природы и что явления природы не могут иметь другого объяснения. Тем не менее по прошествии менее ста лет стало очевидно, что ньютоновская модель не может объяснить новые открытия, а ее закономерности действуют не всегда.
А началось все с открытия и исследования явлений электричества и магнетизма, которые свидетельствовали о существовании сил неизвестной природы и не допускали механистического толкования. Это неизвестное до сих пор взаимодействие было названо полем.
Полюшко-Поле
Простейшие электрические и магнитные явления были известны еще в древние времена. Люди знали, что существуют минералы, притягивающие кусочки железа, а янтарь (по-гречески – электрон), потертый о шерсть, притягивает легкие предметы. Однако сведений об изучении этих необыкновенных явлений практически до конца XVI века не имелось. По-видимому, этими вопросами всерьез никто не занимался.
Впервые разграничил электрические и магнитные явления английский ученый У. Гильберт, который в 1600 году опубликовал свой труд «О магните, магнитных телах и о большом магните – Земля». Именно благодаря Гильберту человечество узнало о существовании магнитного поля нашей планеты. В XVII–XVIII веках проводились многочисленные опыты с наэлектризованными телами, были даже построены первые электростатические машины, основанные на электризации трением, установлено существование электрических зарядов, обнаружена электропроводимость металлов, а в середине XVIII века появился первый конденсатор – лейденская банка, – который позволял накапливать большие электрические заряды.
В первой половине XVIII века американский ученый Б. Франклин сформулировал первую последовательную теорию электрических явлений, установил электрическую природу молнии и изобрел молниеотвод. Во второй половине XVIII века в результате экспериментальных исследований французский физик Ш. Кулон вывел «основной закон электростатики» (закон Кулона), а позднее установил закон взаимодействия полюсов длинных магнитов и ввел понятие магнитного заряда.
Начиная со второй половине XVIII века работы известных ученых Ш. Кулона, Г. Кавендиша, А. Вольты, Г. Ома, Дж. Джоуля и других вывели исследовательские работы по электрическим и магнитным явлениям на высокий уровень. Однако электрические и магнитные явления исследовались ими вне зависимости друг от друга.
Наиболее фундаментальное открытие было сделано в 1820 году датским физиком Х. Эрстедом; он обнаружил действие электрического тока на магнитную стрелку – явление, свидетельствующее о связи между электрическими и магнитными явлениями. В том же году французский физик А.-М. Ампер установил закон взаимодействия электрических токов и показал, что свойства постоянных магнитов можно объяснить циркуляцией электрических токов в молекулах намагниченных тел. То есть, согласно Амперу, все магнитные явления сводятся к взаимодействию токов, магнитных же зарядов не существует. Именно с открытиями Эрстеда и Ампера обычно связывают рождение электродинамики как науки (4).
Открытие электромагнитных волн. Огромный вклад в развитие электродинамики внес английский ученый, величайший экспериментатор М. Фарадей – творец общего учения об электромагнитных явлениях, в котором все электрические и магнитные процессы рассматриваются с единой точки зрения. Когда Фарадей поднес к медной катушке магнит и вызвал в ней электрический ток, преобразовав таким образом механическую работу в электрическую энергию, наука оказалась в тупике. Этот фундаментальный эксперимент стал основой для теоретических размышлений Фарадея, а позднее – блестящего теоретика Дж. Максвелла, плодом которых стала теория электромагнетизма.
Фарадей открыл явление электромагнитной индукции (1831), установил законы электролиза, доказал взаимосвязь электрических и магнитных явлений с оптическими, открыл поляризацию диэлектриков, явления парамагнетизма. Но самое поразительное в том, что Фарадей первым шагнул за пределы физики Ньютона, введя в рассмотрение электрическое и магнитное поля как реальные объекты. Вместо вывода о том, что два противоположных заряда притягиваются точно так же, как две «точки массы» в ньютоновской механике, Фарадей счел более приемлемым утверждать, что каждый заряд создает вокруг себя особое «возбуждение», или «состояние», благодаря которому противоположный заряд, находящийся поблизости, испытывает притяжение. Состояние, способное порождать силу, и было названо полем. Причем поле создается каждым зарядом независимо от присутствия противоположного заряда, способного испытать его воздействие.