Молох (сборник) - Станислав Лем
Шрифт:
Интервал:
Закладка:
Вычислительная мощность жизни[98]
1
В начале я должен сказать, что не считаю себя достаточно компетентным для хотя бы эскизного определения «горизонта эволюции молекулярных компьютеров», которые являются фундаментальной базой процессов ЖИЗНИ, сегодня пока еще плохо изученной. Эта моя некомпетентность в некоторой степени все же умаляется тем фактом, что пока НИКТО не в состоянии так далеко зайти или заглянуть в эти находящиеся перед нами лишь в отдаленной временной перспективе молекулы, созданные из типовых для кода наследственности нуклеотидов, молекулы, повторюсь для выразительности, представляющие собой «естественно возникшие микромашины Тьюринга».
2
Первое подтверждение того, что моя смутная интуиция имела смысл, указывая на генетический КОД, как на будущего универсального проектанта и одновременно вычислителя, управляющего жизненными процессами, можно найти в американском специализированном журнале «Science» (том 266 от 11 ноября 1994 года). Мне прислали из США ксерокопии статей, демонстрирующих потенциально содержащуюся в нуклеотидных цепочках вычислительную мощность, которая почти на десять порядков превышает вычислительную мощность самых современных компьютеров (используемых и создаваемых нами), работающих последовательно. Сделал это доброжелательный читатель, поскольку заметил, как он мне написал, какое-то родство моей интуиции, нашедшей отражение в книге «Мнимая величина» и касающейся именно действенных потенциалов наследственного кода, с первыми результатами работ, в которых фрагменты кода — олигонуклеотидные секвенции, состоящие из примерно 20 полимеров, — оказались способны практически преодолеть, то есть решить, такие задачи из области теории графов Гамильтона, которые для «нормального» компьютера оказываются очень трудоемкими. В ЭТУ проблему, разрешенную посредством олигонуклеотидов в жидкой фазе, вникать подробно я не намерен по двум причинам: во-первых, поскольку я очень плохо знаком с теорией графов, и, во-вторых, поскольку задача, решенная с помощью нуклеотидного штурма, не имеет практически ничего общего с протеканием эволюционных процессов (биологических); решение это только показывает, что в полужидкой среде, которую могут образовывать капельки протоплазмы с наследственным кодом, ими управляемым, скрыта такая вычислительная мощность, о которой до сих пор мы не имели ни малейшего понятия.
3
В двух словах стоит хотя бы пояснить, о какой задаче идет речь. Автором труда «Molecular Computation of Solutions to Combinatorial Problem»[99] является Леонард М. Адельман. В принципе речь идет о проблеме поиска такого пути, который проходит через каждую вершину заданного графа только один раз, и на практике с давних времен эта проблема рассматривалась как задача коммивояжера, который должен посетить по очереди целый ряд населенных пунктов таким образом, чтобы ни один не пропустить на своем пути и одновременно чтобы этот путь оказался как можно короче (экономичнее). Сложность проблемы, которая при малом количестве «населенных пунктов» не представляет особой трудности для нормального компьютера, при возрастании числа этих «населенных пунктов» (вершин графа) начинает расти экспоненциально. Если микросекунда необходима для решения задачи из десяти пунктов, то уже 3,9 × 1011 веков надо ждать решения для СТА пунктов. (Я, оговорюсь, сам не считал, но полностью полагаюсь на статью «On the Path to Computation with DNA»[100] Дэвида К. Гиффорда, помещенную в уже упоминаемом номере журнала «Science».) И вот такую сложнейшую проблему олигонуклеотидные секвенции смогут разрешить не за это «нечеловеческое» время, поскольку действуют «широким фронтом». Говоря иначе, этих молекулярных цепочек существует (должно существовать) очень много, но ведь и в природе в них нет недостатка: например, простейшие бактерии, то есть уже организмы, взаимодействуют в количествах порядка миллиардов и триллионов. Иначе говоря, проблема преодолевается методом brute force и одновременно параллельно, поскольку задача атакуется всеми олигонуклеотидными цепочками, а решением может оказаться одна их секвенция. Однако эта проблема, в которой математика бросает в бой Гамильтоновы методы, НЕ является главным стержнем моей выраженной здесь надежды, что ТАКИЕ вычислительные методы лежат в основе жизни. Дело только в том, что таким образом оказался «сорван занавес» с кажущейся «хаотической игры» нуклеотидов, за которой таится вычислительный потенциал, и это открытие бросает еще не слишком ясный, но уже поддающийся осмыслению свет на те три миллиарда лет существования Земли, во время которых жизнь на ней была исключительно жизнью простейших организмов, а позже — бактерий.
4
В первой половине нашего столетия модным было доказательство «абсолютной неправдоподобности», каковой представляется возникновение жизни (биогенез) в ходе хаотически-случайных процессов. Кроме того, в середине века были популярны диспуты дарвинистов-эволюционистов с креационистами-скептиками, которые добивались от первых, чтобы те объяснили с эволюционной точки зрения возникновение видов, органов, поведение животных и т. п. Естественно, что эволюционисты и биологи первой волны, каким, например, был Дж. Б.С. Холдейн, склонный к мелким стычкам, в общем проигрывали. Дело в том, что человеческий разум, даже если это будет разум супермудрого дарвиниста, не в состоянии представить и выразить способом, подлежащим очевидной верификации, истинность тех процессов, которые происходили в течение миллионов тысяч лет или хотя бы «только» миллионов лет.
5
Имея особую слабость к отступлениям, я здесь вспомню, что, когда восемь лет назад мне представилась возможность побеседовать с лауреатом Нобелевской премии Манфредом Эйгеном, я познакомился с его теорией «гиперциклов», которые, по его мнению, должны были определить основы возникновения явлений жизни, и некоторое время я ходил, успокоенный мыслью, что биогенез наконец-то нашел свое научное объяснение. Только потом меня посетили некоторые сомнения: гиперциклы так же, как и вся прекрасная схема эволюционной работы, опирающейся на репликации процессов элементарной эволюции (той, о которой праведный дарвинист скажет — survival of the fittest[101]), являются очень хорошим инструментом, но ведь это не есть нечто, что могло возникнуть, «свалившись с небес». Иначе говоря: вопрос о начале жизни благодаря гипотезе о гиперциклах оказался отодвинутым по-прежнему в темное прошлое, в котором что-то эти гиперциклические реакции, неустанно протекающие благодаря постоянному притоку энергии, вызвало к существованию… и здесь нам по-прежнему ничего не известно.
6
Работа Адельмана, о которой говорилось выше, не проясняет непосредственно ничего, что касается биогенеза. В то же время возникает мысль, которую я позволю себе очень кратко изложить. Типичный компьютер класса desktop выполняет по меньшей мере 106 операций в секунду. Самые быстрые компьютеры могут выполнить 1012 операций в секунду. Если соединение (англичане пишут concatenation) двух молекул ДНК признать за одну операцию (элементарную) и если около половины олигонуклеотидов насчитывает таких соединений 4 × 1014, то именно 1014 операций выполняется, когда каждый нуклеотид «действует по собственной программе». Это, собственно, и есть прямая атака brute force, которую легко можно увеличить до 1020 операций. Не говорю вообще, что именно ТАК действует аппаратура наследственного кода, которая несравнимо более сложная (в ее работе участвуют различные дополнительные помощники-энзимы, и хотя мой старый словарь генетики насчитывает 600 страниц, в нем нет ни слова о вычислительной мощности, потенциально присутствующей в коде). Я представляю только удивительный порядок величины тех сил, которые возникают с момента, когда нуклеотиды уже появляются и работают, ориентированные для разрешения определенной проблемы.
7
Понятно, что ключом к следующим воротам, или толчком для очередного (кто знает, не решающего ли) шага, будет вопрос о том, откуда берутся задачи, поставленные в Природе, которые достаются нуклеотидам? Гамильтоновы методы и графы не имеют ведь НИЧЕГО общего с жизненными процессами. Это похоже на то, как если бы мы продемонстрировали мощность, дремлющую в некоем вычислительном устройстве, причем в таком «устройстве», которое ничем не напоминает компьютер нашего производства. Биохимик скажет: гидролиз одной молекулы трифосфата аденозина требует столько энергии, что одного джоуля хватит на 2 × 1019 операций.