История самолётов 1919 – 1945 - Д. Соболев
Шрифт:
Интервал:
Закладка:
Рис. 3.50. Исследования самолета трубе Т-101 в ЦАГИ
Следующим шагом в уменьшении лобового сопротивления двигателей жидкостного охлаждения явилось появление капотов для радиаторов. Они представляли собой особым образом профилированный туннель под фюзеляжем или крылом, внутри которого располагался радиатор. Помимо улучшения внешних обводов самолета, применение туннельных радиаторов с регулируемым выходным сечением позволяло оптимизировать скорость охлаждающего потока в соответствии с полетным режимом и, таким образом, в 2–3 раза уменьшить потери мощности на охлаждение при полете с максимальной скоростью [13, с. 52].
Впервые радиаторы туннельного типа появились на самолетах-истребителях фирмы Кертисс во второй половине 30-х годов. В СССР истребители с туннельными радиаторами стали поступать на вооружение в начале 40-х годов (Як-1, МиГ-3, ЛаГГ-3).
Известны попытки вообще отказаться от нормального радиатора, заменив его охлаждающими устройствами, расположенными под обшивкой крыльев. Вода в двигателе нагревалась до состояния пара и вновь конденсировалась в жидкость, проходя вдоль поверхности крыла. Такой тип охлаждения получил название «испарительное охлаждение», а радиаторы — поверхностного или крыльевого типа. Впервые такие радиаторы применили в 20-е годы на рекордных скоростных самолетах в США, Англии и Италии.
Примером самолета-истребителя с крыльевыми поверхностными радиаторами был немецкий Хейнкель Не-100с мотором DB-601, созданный незадолго до начала второй мировой войны. Отличаясь очень малым аэродинамическим сопротивлением, он имел большую скорость полета. 30 марта 1939 г. летчик Ганс Дитерлен установил на нем абсолютный мировой рекорд скорости — 746 км/ч[8, с. 147]. Однако то. что хорошо для специальных рекордных самолетов, оказалось непригодным в реальных условиях. Радиаторы на крыльях было невозможно регулировать, они часто давали течь, а военные самолеты с испарительным охлаждением оказались чрезвычайно уязвимыми в бою — достаточно было одного попадания в крыло, чтобы вывести систему охлаждения из строя. Поэтому поверхностные радиаторы не нашли практического применения в авиации, а Не-100 не стал серийным самолетом.
Разработка этиленгликолевого охлаждения и туннельных радиаторов способствовала возврату к двигателям водяного охлаждения в предвоенном авиастроении. Наибольшее распространение эти двигатели получили на самолетах-истребителях. Как известно, в конце 30-х годов на военных самолетах стало применяться пушечное вооружение, а V-образная схема расположения цилиндров, характерная для авиационных моторов водяного охлаждения, давала возможность размещения в развале блока пушки, стреляющей через вал пропеллера. В случае же звездообразных двигателей нужно было применять оружие с синхронизаторами для стрельбы через винт или выносить егоза пределы ометаемой винтом площади, что понижало скорострельность (в первом варианте) и точность стрельбы (во втором).
Как уже отмечалось, применение убираемого шасси обусловило широкое распространение схемы «низкоплан». Недостатком данной схемы было увеличение сопротивления из-за интерференции крыла и фюзеляжа. Однако на основе аэродинамических исследований вскоре удалось найти конструктивные меры, позволившие минимизировать сопротивление интерференции. Имелось несколько путей решения проблемы. В США пошли по пути установки в местах соединения крыльев и фюзеляжа специальных зализов, закрывающих острый угол между поверхностями крыла и фюзеляжа и устраняющих тем самым неблагоприятный диффузионный эффект. Такая схема оказалась наиболее удобной в случае расположения в носовой части самолета звездообразного мотора, требующего применения круглого фюзеляжа. Во Франции фирма Кордон использовала схему «низкоплан» без зализов, но фюзеляж делался с плоскими боковыми стенками. Применение такой конструкции было возможно для самолетов с моторами жидкостного охлаждения или с рядными моторами воздушного охлаждения. Наконец, немецкий конструктор Хейнкель на самолете Не-70 реализовал схему «обратной» чайки, при которой также уменьшался эффект интерференции, т. к. крыло соединялось с овальным фюзеляжем под прямым углом. Отмеченные компоновки показаны на рис. 3.51. Наибольшее распространение приобрела схема с зализами, т. к. фюзеляж с прямыми боковыми стенками имел недостатки в отношении обтекаемости, а схема «обратная чайка» не получила широкого признания из-за конструктивной сложности и трудности размещения закрылков.
Третьей составляющей силы сопротивление является сила трения. По мере совершенствован и формы самолетов и увеличения их скорости доля этого вида сопротивления в общем лобовом сопротивлении становилась все более ощутимой Если для самолетов периода 1928–1929 гг. доля сопротивления трения составляла 25–30 %, то для самолетов середины 30-х годов данная величина повысилась до 50–60 % [15, с. 55]. Переход от бипланного к монопланному крылу позволил уменьшить площадь «смачиваемой» поверхности, а следовательно. и силу трения, но проблема по-прежнему оставалась.
Исследования показывали, что сила трения сильно зависит от степени шероховатости поверхности, и при создании скоростных самолетов требуется очень тщательная отделка поверхностей. в особенности передней кромки крыла.
Для повышения гладкости поверхности самолетов в 30-е годы стали применять потайную клепку, соединение листов обшивки встык, а не внахлест, как иногда делали раньше: повысились требования к качеству окраски, производилась полировка поверхности. Конечно, все эти мероприятия увеличивали стоимость производства, но иначе невозможно было добиться хороших скоростных качеств и большой дальности полета.
Наиболее сложным был переход на заклепки с потайными головками, т. к. это требовало дополнительной технологической операции (зенковка) для каждой заклепки, а число их на большом самолете измеряется сотнями тысяч. Поэтому вначале потайную клепку использовали только вблизи передней кромки крыла. Но когда скорости полета превысили 500 км/ч, ее стали применять повсюду. Первые серийные самолеты, построенные с использованием потайной клепки, появились в США в середине 30-х годов. Это — Боинг 247D и Боинг В-17, некоторые летающие лодки И. Сикорского [34, с. 544].
Рис. 3.51. Виды соединения крыла и фюзеляжа
Выше быди рассмотрены меры по снижению профильного сопротивление, сопротивлении интерференции и сопротивления трения. Четвертой составляющей полного аэродинамического сопротивления самолета является волновое сопротивление, обусловленное сжимаемостью воздуха. Оно начинает проявляться тогда, когда скорость полета приближается к скорости звука. Для сравнительно небольших высот и для внешних форм, характерных для самолетов 30-х годов, волновое сопротивление могло возникнуть на скоростях окаю 700 км/ч. Самолеты так быстро не летали, и озадачивать себя этой проблемой казалось бы было рано. Однако наиболее дальновидные ученые-аэродинамики понимали, что со временем эта задача перейдет из теоретической сферы в практическую. Осенью 1935 г. в Италии состоялся научный конгресс, посвященный проблемам сверхзвукового полета. Там немецкий ученый А. Буземан на основе теоретических выкладок впервые указал на достоинства стреловидного крыла при сверхзвуковых скоростях по сравнению с прямым. Правда, вопреки распространенной точке зрения, Буземан предлагал применять стреловидное крыло не для уменьшения волнового сопротивления, а для снижения потерь подъемной силы на крыле на сверхзвуке [67] [24]. Выводы Буземана были восприняты участниками конгресса с интересом, и на заключительном банкете Карман, Крокко, Тейлор и другие видные ученые-аэродинамики даже сделали на обложке меню набросок скоростного самолета со стреловидным крылом [35, с. 4].
Однако практических последствий доклад Буземана не возымел. Для проверки теоретических предположений требовался аэродинамический эксперимент, а сверхзвуковых аэродинамических труб еще не было. Первые такие трубы появились только перед самой войной в Аэродинамическом институте в Цюрихе (Я. Аккерет) и в Геттингенском институте (А. Бетц).
Если говорить о конструкторах самолетов, то проблема волнового сопротивления не только не занимала их, но, видимо, даже не была известна большинству создателей авиационной техники. Так, например, в изданном в 1937 г. в СССР «Справочнике авиаконструктора» [37] термин «волновое сопротивление» вообще отсутствовал.
В целом же, в результате совместных усилий ученых и конструкторов во второй половине 30-х годов коэффициент аэродинамического лобового сопротивления Схо удалось уменьшить с 0,030-0,025 до 0,022-0,021. По сравнению с первой половиной десятилетия темп снижения этого параметра заметно уменьшился, что свидетельствовало о близости внешних обводов самолетов с поршневыми двигателями к оптимальным.