Черные дыры и складки времени. Дерзкое наследие Эйнштейна - Кип Торн
Шрифт:
Интервал:
Закладка:
В форме железа вещество уже не может никаким образом высвободить ядерную энергию. Ядерные силы удерживают нейтроны и протоны в железных ядрах сильнее, чем в любых других видах атомных ядер.
При сжатии железа относительно его нормальной плотности 7,6 граммов на кубический сантиметр до 100, а затем до 1000 граммов на кубический сантиметр железо сопротивляется сжатию таким же образом, как и любой камень: электроны каждого атома реагируют на сжатие между электронами ближайших атомов «клаустрофобным» (вырожденным) движением. Сначала сопротивление огромно, не потому что отталкивающие силы особенно сильны, а, скорее потому, что начальное давление при малой плотности очень слабое. (Вспомните, что сопротивление сжатию есть увеличение давления, выраженное в процентах, которое сопровождает 1 %-ное увеличение плотности. Если давление слабое, то его небольшое увеличение приводит к огромному увеличению в процентах и, таким образом, дает огромное сопротивление. Затем, при более высоких плотностях, когда давление становится сильнее, большое увеличение давления порождает намного более скромное увеличение процента и, таким образом, дает более скромное сопротивление.)
Поначалу при сжатии холодного вещества электроны собираются вокруг железных ядер, формируя электронные облака, образованные электронными орбиталями. (На каждой орбитали фактически находятся два электрона, а не один. Эта тонкость была упущена в главе 4, но кратко обсуждается во Врезке 5.1.) С ростом сжатия каждая орбиталь и два ее электрона постепенно заключаются во все меньшую и меньшую ячейку пространства; клаустрофобные электроны препятствуют этому ограничению, становясь все более подобными волне, и развивают все более высокие скорости хаотических клаустрофобных движений («движения вырождения»; см. главу 4). Когда плотность достигает 105 (100000) граммов на кубический сантиметр, движение вырождения электронов и давление вырождения, которое им порождается, становятся настолько большими, что они полностью подавляют электрические силы, с которыми ядра притягивают электроны. Электроны больше не собираются вокруг железных ядер и полностью их игнорируют. Холодное неорганическое вещество, которое вначале было глыбой железа, теперь становится веществом, из которого сделаны белые карлики, а уравнение состояния становится тем уравнением, которое Чандрасекар, Андерсон и Стонер получили в начале 1930-х (рис. 4.3): с сопротивлением 5/3 и затем с гладким переходом к 4/3 для плотностей, приблизительно равных 10 граммов на кубический сантиметр, когда скорости хаотических движений электронов приближаются к скорости света.
Переход от вещества белых карликов к веществу нейтронных звезд начинается, согласно вычислениям Гаррисона — Уилера, при плотности 4x1011 граммов на кубический сантиметр. Вычисления показывают несколько фаз перехода. В первой фазе электроны начинают вжиматься в атомные ядра, и их заглатывают протоны ядер, превращаясь в нейтроны. Вещество, потеряв, таким образом, часть электронов, поддерживающих давление, внезапно становится намного менее стойким к сжатию. Это вызывает резкий обрыв в уравнении состояния (см. диаграмму выше).
В процессе развития этой фазы сжатия атомные ядра становятся все более насыщенными нейтронами, что вызывает вторую фазу: нейтроны начинают просачиваться (выдавливаться) из ядер в межядерное пространство, где еще осталось немного электронов. Эти просочившиеся нейтроны, как и электроны, противодействуют продолжающемуся сжатию собственным давлением вырождения. Это нейтронное давление вырождения прекращает обрыв в уравнении состояния, сопротивление сжатию возвращается и начинает увеличиваться. В третьей фазе, при плотности приблизительно между 1012 и 4x1012 граммов на кубический сантиметр, все пересыщенные нейтронами ядра полностью распадаются, т. е. разваливаются на отдельные нейтроны, образующие нейтронный газ, изученный Оппенгеймером и Волковым, с малой примесью электронов и протонов. С этого момента при повышении плотности уравнение состояния принимает вид уравнения состояния Оппенгеймера — Волкова нейтронных звезд (штриховая кривая на диаграмме, если ядерные силы игнорируются; сплошная кривая, если воспользоваться лучшим пониманием ядерных сил 1990-х).
* * *
Имея на руках это уравнение состояния холодного мертвого вещества, Джон Уилер попросил Масами Вакано, постдока из Японии, проделать то же, что сделал для нейтронных звезд Волков, а для белых карликов Чандрасекар: соединить уравнения состояния с уравнениями общей теории относительности, описывающими баланс гравитации и давления внутри звезды. Потом из этого соединения получить дифференциальное уравнение, описывающее структуру звезды, а затем численно решить это дифференциальное уравнение. Численные расчеты раскроют детали внутренней структуры всех холодных, мертвых звезд и, что самое важное, определят звездные массы.
5.5. Окружности (по горизонтали), массы (по вертикали) и плотности (обозначены на кривой) в центре холодных мертвых звезд в соответствии с расчетами М.Вакано, сделанными под руководством Дж. Уилера с использованием уравнения состояния. Сплошная линия — современная кривая, полученная по данным 1990-х годов и правильно учитывающая ядерные силы, т. е. при центральных плотностях, превышающих плотность атомного ядра (больше 2х1014 г/см3), штриховая линия — кривая, полученная Оппенгеймером и Волковым без учета ядерных сил
Вычисления структуры отдельной звезды (распределение энергии, давления и гравитации внутри звезды) потребовали от Чандрасекара и Волкова многодневного напряженного труда, когда в 1930-х годах они били по кнопкам своих механических калькуляторов в Кембридже и Беркли. Тогда как Вакано в Принстоне в 50-х имел в своем распоряжении один из первых в мире цифровых компьютеров MANIAC (комнату набитую электронными лампами и проводами), который был сооружен в Принстонском институте передовых исследований для расчетов, связанных с созданием водородной бомбы. С помощью MANIAK Вакано мог «перемалывать» расчеты структуры каждого типа звезд менее чем за час.
Результаты вычислений Вакано показаны на рис. 5.5. Этот рисунок представляет собой окончательный каталог холодных мертвых объектов и отвечает на все вопросы, поднимавшиеся ранее в этой главе.
На диаграмме рис. 5.5 окружность звезды отложена по оси вправо, а ее масса — вверх. Каждая звезда с окружностью и массой, которые попадают в светлую область рисунка, имеет внутренние силы гравитации, превышающие давление, и потому гравитация звезды будет заставлять звезду сжиматься и перемещаться влево на этой диаграмме. Каждая звезда в заштрихованной области имеет давление, превосходящее гравитацию, и поэтому ее давление будет заставлять звезду расширяться при движении по диаграмме вправо. Лишь на границе между заштрихованной и светлой областями гравитация и давление точно уравниваются, и, таким образом, граничная кривая представляет собой кривую холодных, мертвых звезд в состоянии равновесия давления и гравитации.
Начав двигаться вдоль кривой равновесия, мы будем последовательно проходить мертвые «звезды» все более высокой плотности. При наименьших плотностях (в нижней части рисунка) эти «звезды» — даже и не звезды, а холодные планеты из железа. (Когда Юпитер окончательно исчерпает свой внутренний источник радиоактивного тепла и остынет, хотя он и построен в основном из водорода, а не из железа, он будет, тем не менее, располагаться вблизи самой правой точки на кривой равновесия.) Более высокие плотности, чем у планеты, имеют белые карлики Чандрасекара.
Если, достигнув самой верхней точки кривой в области белых карликов (предел Чандрасекара в 1.4 солнечной массы8), начать затем двигаться в сторону еще больших плотностей, то мы неминуемо сталкиваемся с холодными мертвыми звездами, которые не могут существовать в природе, потому что они нестабильны по отношению к взрыву или схлопыванию. При движении от плотностей белых карликов к большим плотностям нейтронных звезд масса этих нестабильных звезд будет уменьшаться, пока не достигнет минимума, примерно равного 0.1 солнечной массы, при окружности 1000 км и центральной плотности 3х1013 г/см[73]. Это та первая нейтронная звезда, которую изучали Оппенгеймер и Сербер, и показали, что она не может располагаться в ядре Солнца и иметь массу в 0.001 массы Солнца, как полагал Ландау.
Врезка 5.6
Неустойчивые обитатели промежутка между белыми карликами и нейтронными звездами
На кривой равновесия на рис. 5.5 все звезды между белыми карликами и нейтронными звездами неустойчивы. Примером является звезда с плотностью в центре, равной 10 граммов на кубический сантиметр, масса которой и окружность соответствуют точке на рис. 5.5, обозначенной числом 1013. В точке 1013 эта звезда находится в равновесии: ее гравитация и давление полностью уравновешивают друг друга. Однако звезда в этой точке так же неустойчива, как карандаш, стоящий на острие.