Категории
Самые читаемые
RUSBOOK.SU » Компьютеры и Интернет » Программное обеспечение » Архитектура операционной системы UNIX - Морис Бах

Архитектура операционной системы UNIX - Морис Бах

Читать онлайн Архитектура операционной системы UNIX - Морис Бах

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 39 40 41 42 43 44 45 46 47 ... 127
Перейти на страницу:

• Имена текущего каталога и текущего корня, описывающие файловую систему, в которой выполняется процесс.

• Таблица пользовательских дескрипторов файла, которая описывает файлы, открытые процессом.

• Поля границ, накладывающие ограничения на размерные характеристики процесса и на размер файла, в который процесс может вести запись.

• Поле прав доступа, хранящее двоичную маску установок прав доступа к файлам, которые создаются процессом. Пространство состояний процесса и переходов между ними рассматривалось в данном разделе на логическом уровне. Каждое состояние имеет также физические характеристики, управляемые ядром, в частности, виртуальное адресное пространство процесса. Следующий раздел посвящен описанию модели распределения памяти; в остальных разделах состояния процесса и переходы между ними рассматриваются на физическом уровне, особое внимание при этом уделяется состояниям «выполнения в режиме задачи», «выполнения в режиме ядра», «резервирования» и «приостанова (в памяти)». В следующей главе затрагиваются состояния «создания» и «прекращения существования», а в главе 8 — состояние «готовности к запуску в памяти». В главе 9 обсуждаются два состояния выгруженного процесса и организация подкачки по обращению.

6.2 ФОРМАТ ПАМЯТИ СИСТЕМЫ

Предположим, что физическая память машины имеет адреса, начиная с 0 и кончая адресом, равным объему памяти в байтах. Как уже отмечалось в главе 2, процесс в системе UNIX состоит из трех логических секций: команд, данных и стека. (Общую память, которая рассматривается в главе 11, можно считать в данном контексте частью секции данных). В секции команд хранится набор машинных инструкций, исполняемых под управлением процесса; адресами в секции команд выступают адреса команд (для команд перехода и обращений к подпрограммам), адреса данных (для обращения к глобальным переменным) и адреса стека (для обращения к структурам данных, которые локализованы в подпрограммах). Если адреса в сгенерированном коде трактовать как адреса в физической памяти, два процесса не смогут параллельно выполняться, если их адреса перекрываются. Компилятор мог бы генерировать адреса, непересекающиеся у разных программ, но на универсальных ЭВМ такой порядок не практикуется, поскольку объем памяти машины ограничен, а количество транслируемых программы неограничено. Даже если для того, чтобы избежать излишнего пересечения адресов в процессе их генерации, машина будет использовать некоторый набор эвристических процедур, подобная реализация не будет достаточно гибкой и не сможет удовлетворять предъявляемым к ней требованиям.

Поэтому компилятор генерирует адреса для виртуального адресного пространства заданного диапазона, а устройство управления памятью, называемое диспетчером памяти, транслирует виртуальные адреса, сгенерированные компилятором, в адреса ячеек, расположенных в физической памяти. Компилятору нет необходимости знать, в какое место в памяти ядро потом загрузит выполняемую программу. На самом деле, в памяти одновременно могут существовать несколько копий программы: все они могут выполняться, используя одни и те же виртуальные адреса, фактически же ссылаясь на разные физические ячейки. Те подсистемы ядра и аппаратные средства, которые сотрудничают в трансляции виртуальных адресов в физические, образуют подсистему управления памятью.

6.2.1 Области

Ядро в версии V делит виртуальное адресное пространство процесса на совокупность логических областей. Область — это непрерывная зона виртуального адресного пространства процесса, рассматриваемая в качестве отдельного объекта для совместного использования и защиты. Таким образом, команды, данные и стек обычно образуют автономные области, принадлежащие процессу. Несколько процессов могут использовать одну и ту же область. Например, если несколько процессов выполняют одну и ту же программу, вполне естественно, что они используют одну и ту же область команд. Точно так же, несколько процессов могут объединиться и использовать общую область разделяемой памяти.

Ядро поддерживает таблицу областей и выделяет запись в таблице для каждой активной области в системе. В разделе 6.5 описываются поля таблицы областей и операции над областями более подробно, но на данный момент предположим, что таблица областей содержит информацию, позволяющую определить местоположение области в физической памяти. Каждый процесс имеет частную таблицу областей процесса. Записи этой таблицы могут располагаться, в зависимости от конкретной реализации, в таблице процессов, в адресном пространстве процесса или в отдельной области памяти; для простоты предположим, что они являются частью таблицы процессов. Каждая запись частной таблицы областей содержит указатель на соответствующую запись общей таблицы областей и первый виртуальный адрес процесса в данной области. Разделяемые области могут иметь разные виртуальные адреса в каждом процессе. Запись частной таблицы областей также содержит поле прав доступа, в котором указывается тип доступа, разрешенный процессу: только чтение, только запись или только исполнение. Частная таблица областей и структура области аналогичны таблице файлов и структуре индекса в файловой системе: несколько процессов могут совместно использовать адресное пространство через область, подобно тому, как они разделяют доступ к файлу с помощью индекса; каждый процесс имеет доступ к области благодаря использованию записи в частной таблице областей, точно так же он обращается к индексу, используя соответствующие записи в таблице пользовательских дескрипторов файла и в таблице файлов, принадлежащей ядру.

На Рисунке 6.2 изображены два процесса, A и B, показаны их области, частные таблицы областей и виртуальные адреса, в которых эти области соединяются. Процессы разделяют область команд 'a' с виртуальными адресами 8К и 4К соответственно. Если процесс A читает ячейку памяти с адресом 8К, а процесс

Рисунок 6.2. Процессы и области

B читает ячейку с адресом 4К, то они читают одну и ту же ячейку в области 'a'. Область данных и область стека у каждого процесса свои.

Область является понятием, не зависящим от способа реализации управления памятью в операционной системе. Управление памятью представляет собой совокупность действий, выполняемых ядром с целью повышения эффективности совместного использования оперативной памяти процессами. Примерами способов управления памятью могут служить рассматриваемые в главе 9 замещение страниц памяти и подкачка по обращению. Понятие области также не зависит и от собственно распределения памяти: например, от того, делится ли память на страницы или на сегменты. С тем, чтобы заложить фундамент для перехода к описанию алгоритмов подкачки по обращению (глава 9), все приводимые здесь рассуждения относятся, в первую очередь, к организации памяти, базирующейся на страницах, однако это не предполагает, что система управления памятью основывается на указанных алгоритмах.

6.2.2 Страницы и таблицы страниц

В этом разделе описывается модель организации памяти, которой мы будем пользоваться на протяжении всей книги, но которая не является особенностью системы UNIX. В организации памяти, базирующейся на страницах, физическая память разделяется на блоки одинакового размера, называемые страницами. Обычный размер страниц составляет от 512 байт до 4 Кбайт и определяется конфигурацией технических средств. Каждая адресуемая ячейка памяти содержится в некоторой странице и, следовательно, каждая ячейка памяти может адресоваться парой (номер страницы, смещение внутри страницы в байтах). Например, если объем машинной памяти составляет 2 в 32-й степени байт, а размер страницы 1 Кбайт, общее число страниц — 2 в 22-й степени; можно считать, что каждый 32-разрядный адрес состоит из 22-разрядного номера страницы и 10-разрядного смещения внутри страницы (Рисунок 6.3).

Когда ядро назначает области физические страницы памяти, необходимости в назначении смежных страниц и вообще в соблюдении какой-либо очередности при назначении не возникает. Целью страничной организации памяти является повышение гибкости назначения физической памяти, которое строится по аналогии с назначением дисковых блоков файлам в файловой системе. Как и при назначении блоков файлу, так и при назначении области страниц памяти, преследуется задача повышения гибкости и сокращения неиспользуемого (вследствие фрагментации) пространства памяти.

Шестнадцатиричный адрес 58432 Двоичный 0101 1000 0100 0011 0010 Номер страницы, смещение внутри страницы 01 0110 0001 00 0011 0010 В шестнадцатиричной системе 161 32

Рисунок 6.3. Адресация физической памяти по страницам

1 ... 39 40 41 42 43 44 45 46 47 ... 127
Перейти на страницу:
На этой странице вы можете бесплатно скачать Архитектура операционной системы UNIX - Морис Бах торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Вася
Вася 24.11.2024 - 19:04
Прекрасное описание анального секса
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит