Общая химия - Николай Глинка
Шрифт:
Интервал:
Закладка:
В связи с отсутствием определенной температуры плавления аморфные тела обладают и другой особенностью: многие из них подобно жидкостям текучи, т. е. при длительном действии сравнительно небольших сил постепенно изменяют свою форму. Например, кусок смолы, положенный на плоскую поверхность, в теплом помещении за несколько недель растекается, принимая форму диска.
В отношении внутреннего строения различие между кристаллическим и аморфным состояниями вещества состоит в следующем. Упорядоченное расположение частиц в кристалле, отражаемое элементарной ячейкой, сохраняется на больших участках кристаллов, а в случае хорошо образованных кристаллов — во всем их объеме. В аморфных телах упорядоченность в расположении частиц наблюдается только на очень малых участках. Кроме того, в ряде аморфных тел даже эта местная упорядоченность носит лишь приблизительный характер.
Это различие можно коротко сформулировать следующим образом: структура кристаллов характеризуется дальним порядком, структура аморфных тел — ближним.
Аморфное состояние характерно, например, для силикатных стекол (§ 182). Некоторые вещества могут находиться как в кристаллическом, так и в аморфном состоянии. Например, диоксид кремния SiO2 встречается в природе в виде хорошо образованных кристаллов кварца, а также в аморфном состоянии (минерал кремень). При этом кристаллическое состояние всегда более устойчиво. Поэтому самопроизвольный переход вещества из кристаллического состояния в аморфное невозможен, а обратное превращение— самопроизвольный переход из аморфного состояния в кристаллическое — возможно и иногда наблюдается. Примером такого превращения служит расстеклование — самопроизвольная кристаллизация стекла при повышенных температурах, сопровождающаяся разрушением его.
53. Жидкости.
Жидкое состояние является промежуточным между газообразным и кристаллическим. По одним свойствам жидкости близки к газам, по другим — к твердым телам. С газами жидкости сближает прежде всего их изотропность и текучесть; последняя обусловливает способность жидкости легко изменять внешнюю форму. Однако высокая плотность и малая сжимаемость жидкостей приближает их к твердым телам.
Способность жидкостей легко изменять свою форму говорит об отсутствии в них жестких сил межмолекулярного взаимодействия. В то же время низкая сжимаемость жидкостей, обусловливающая способность сохранять постоянный при данной температуре объем, указывает на присутствие хотя и не жестких, но все же значительных сил взаимодействия между частицами.
Для каждого агрегатного состояния характерно свое соотношение между потенциальной и кинетической энергиями частиц вещества. У твердых тел средняя потенциальная энергия частиц больше их средней кинетической энергии. Поэтому в твердых телах частицы занимают определенные положения друг относительно друга и лишь колеблются около этих положений. Для газов соотношение энергий обратное, вследствие чего молекулы газа всегда находятся в состоянии хаотического движения и силы сцепления между молекулами практически отсутствуют, так что газ всегда занимает весь предоставленный ему объем. В случае жидкостей кинетическая и потенциальная энергии частиц приблизительно одинаковы, т. е. частицы связаны друг с другом, но не жестко. Поэтому жидкости текучи, но имеют постоянный при данной температуре объем.
В результате применения к жидкостям методов структурного анализа установлено, что по структуре жидкости подобны аморфным телам.
В большинстве жидкостей наблюдается ближний порядок — число ближайших соседей у каждой молекулы и их взаимное расположение приблизительно одинаковы во всем объеме данной жидкости.
Степень упорядоченности частиц у различных жидкостей различна. Кроме того, она изменяется при изменении температуры. При низких температурах, незначительно превышающих температуру плавления данного вещества, степень упорядоченности расположения частиц данной жидкости велика. С ростом температуры она падает, и по мере нагревания свойства жидкости все больше и больше приближаются к свойствам газа. При достижении критической температуры (см. § 71) различие между жидкостью и газом исчезает.
Вследствие сходства во внутренней структуре жидкостей и аморфных тел последние, часто рассматриваются как жидкости с очень высокой вязкостью, а к твердым телам относят только вещества в кристаллическом состоянии. Уподобляя аморфные тела жидкостям, следует, однако, помнить, что в аморфных телах, в отличие от обычных жидкостей, частицы имеют незначительную подвижность — такую же, как в кристаллах.
Глава VI. ОСНОВНЫЕ ЗАКОНОМЕРНОСТИ ПРОТЕКАНИЯ ХИМИЧЕСКИХ РЕАКЦИЙ
54. Превращения энергии при химических реакциях.
Химические реакции протекают с выделением или с поглощением энергии. Обычно эта энергия выделяется или поглощается в виде теплоты. Так, горение, соединение металлов с серой или с хлором, нейтрализация кислот щелочами сопровождаются выделением значительных количеств теплоты. Наоборот, такие реакции, как разложение карбоната кальция, образование оксида азота(II) из азота и кислорода, требуют для своего протекания непрерывного притока теплоты извне и тотчас же приостанавливаются, если нагревание прекращается. Ясно, что эти реакции протекают с поглощением теплоты.
Выделение теплоты при взаимодействии различных веществ заставляет признать, что эти вещества еще до реакции в скрытой форме обладали определенной энергией. Такая форма энергии, скрытая в веществах и освобождающаяся при химических, а также при некоторых физических процессах (например, при конденсации пара в жидкость или при кристаллизации жидкости), называется внутренней энергией вещества (см. также § 66).
При химических превращениях освобождается часть содержащейся в веществах энергии. Измеряя количество теплоты, выделяющееся при реакции (так называемый тепловой эффект реакции), мы можем судить об изменении этого запаса.
При некоторых реакциях наблюдается выделение или поглощение лучистой энергии. Обычно в тех случаях, когда при реакции выделяется свет, внутренняя энергия превращается в излучение не непосредственно, а через теплоту. Например, появление света при горении угля является следствием того, что за счет выделяющейся при реакции теплоты уголь раскаляется и начинает светиться. Но известны процессы, в ходе которых внутренняя энергия превращается в лучистую непосредственно. Эти процессы носят название холодного свечения или люминесценции. Большое значение имеют процессы взаимного превращения внутренней и электрической энергии (см. § 98). При реакциях, протекающих со взрывом, внутренняя энергия превращается в механическую — частью непосредственно, частью переходя сперва в теплоту.
Итак, при химических реакциях происходит взаимное превращение внутренней энергии веществ, с одной стороны, и тепловой, лучистой, электрической или механической энергии, с другой. Реакции, протекающие с выделением энергии, называют экзотермическими, а реакции, при которых энергия поглощается, — эндотермическими.
55. Термохимия.
Энергетические изменения, сопровождающие протекание химических реакций, имеют большое практическое значение. Иногда они даже важнее, чем происходящее при данной реакции образование новых веществ. В качестве примера достаточно вспомнить реакции горения топлива. Поэтому тепловые эффекты реакций уже давно тщательно изучаются. Раздел химии, посвященный количественному изучению тепловых эффектов реакций, получил название термохимии.
В конце XVIII века было установлено, что если при образовании какого-либо соединения выделяется (или поглощается) некоторое количество теплоты, то при разложении этого соединения в тех же условиях такое же количество теплоты поглощается (или выделяется). Это положение вытечет из закона сохранения энергии; из него следует, что чем больше теплоты выделяется при образовании того или иного соединения, тем больше энергии надо затратить на его разложение. Поэтому вещества, при образовании которых выделяется большое количество теплоты, весьма прочны и трудно разлагаются.
Результаты термохимических измерений — тепловые эффекты реакций — принято относить к одному молю образующегося вещества. Количество теплоты, которое выделяется при образовании одного моля соединения из простых веществ, называется теплотой образования данного соединения. Например, выражение "теплота образования жидкой воды равна 285.8 кДж/моль" означает, что при образовании 18 г жидкой воды из 2 г водорода и 16 г кислорода выделяется 285.8 кДж.
Если элемент может существовать в виде нескольких простых веществ, то при расчете теплоты образования этот элемент берется в виде того простого вещества, которое при данных условиях наиболее устойчиво.