Общая химия - Николай Глинка
Шрифт:
Интервал:
Закладка:
При образовании иона O2+ из молекулы O2 удаляется электрон, обладающий максимальной энергией, т. е. находящийся на разрыхляющей молекулярной орбитали πразр 2p. Уменьшение числа разрыхляющих электронов приводит к повышению кратности связи (число связывающих электронов становится больше числа разрыхляющих уже не на четыре, а на пять) и, следовательно, к образованию более прочной молекулы.
Рис. 51. Энергетическая схема образования молекулы азота N2.
Рис. 52. Энергетическая схема образования молекулы кислорода O2.
- 143 -
Рис. 53. Энергетическая схема образования молекулы оксида углерода СО.
Именно поэтому энергия диссоциации молекулярного иона O2+ выше, чем энергия диссоциации молекулы O2 (см. стр. 136).
Подобным же образом рассматривается с точки зрения метода МО образованне молекул, состоящих из различных атомов. Так, на рис. 53 представлена энергетическая схема образования молекулы оксида углерода СО. Здесь на МО переходят четыре 2p-электрона атома кислорода и два 2p-электрона атома углерода. Энергия 2p-электроиов соединяющихся атомов неодинакова: заряд ядра атома кислорода выше, чем заряд ядра атома углерода, так что 2p-электроны в атоме кислорода сильнее притягиваются ядром. Поэтому на рис. 53 расположение 2p-орбиталей атома кислорода соответствует более низкой энергии в сравнении с 2p-орбиталями атома углерода. Как показывает схема, все шесть электронов, участвующих в образовании связи, размещаются на трех связывающих МО.
Наличие в молекуле СО шести связывающих электронов при отсутствии разрыхляющих электронов отвечает, как и в молекуле азота (рис. 51), образованию тройной связи. Это объясняет значительное сходство в свойствах свободного азота и оксида углерода, например, близость энергии диссоциации молекул (N2-945, СО — 1076 кДж/моль), межъядерных расстояний в молекулах (соответственно 0,110 и 0,113 нм), температур плавления (63 и 68 К) и кипения (77 и 82 К).
Рассмотренные примеры показывают, что метод МО успешно объясняет строение и свойства таких молекул, описание которых с помощью метода ВС встречает существенные затруднения.
46. Ионная связь.
Связь такого типа осуществляется в результате взаимного электростатического притяжения противоположно заряженных ионов. Ионы могут быть простыми, т. е. состоящими из одного атома (например, катионы Na+,K+ анионы F- , Cl- ), или сложными, т. е. состоящими из двух или более атомов, (например, катион NH4+ , анионы OH- , NO3-, SO42- ). Простые ионы, обладающие положительным зарядом, легче всего образуются из атомов элементов с низким потенциалом ионизации; к таким элементам относятся металлы главных подгрупп I и II группы (см. табл. 4 и 5 на стр. 97).
- 144 -
Образование простых отрицательно заряженных ионов, напротив, характерно для атомов типичных неметаллов, обладающих большим сродством к электрону. Поэтому к типичным соединениям с ионным типом связи относятся галогениды щелочных металлов, например, NaCl, CsF и т. п.
В отличие от ковалентной связи, ионная связь не обладает направленностью, Это объясняется тем, что электрическое поле иона обладает сферической симметрией, т. е. убывает с расстоянием по одному и тому же закону в любом направлении. Поэтому взаимодействие между ионами осуществляется одинаково независимо от направления. Как уже отмечалось выше (см. рис. 29 на стр. 119), система из двух зарядов, одинаковых по абсолютной величине, но противоположных по знаку, создает в окружающем пространстве электрическое поле. Это означает, что два разноименных иона, притянувшиеся друг к другу, сохраняют способность электростатически взаимодействовать с другими ионами. В этом состоит еще одно различие между ионным и ковалентным типами связи: ионная связь не обладает насыщаемостью. Поэтому к данному иону может присоединиться различное число ионов противоположного знака. Это число определяется относительными размерами взаимодействующих ионов, а также тем, что силы притяжения разноименно заряженных ионов должны преобладать над силами взаимного отталкивания, действующими между ионами одного знака.
Отсутствие у ионной связи направленности и насыщаемости обусловливает склонность ионных молекул к ассоциации, т. е. к соединению их друг с другом. При высоких температурах кинетическая энергия движения молекул преобладает над энергией их взаимного притяжения: поэтому в газообразном состоянии ионные соединения существуют в основном в виде неассоциированных молекул. Но при понижении температуры, при переходе в жидкое и, особенно, в твердое состояние ассоциация ионных соединений проявляется сильно. Все ионные соединения в твердом состоянии имеют не молекулярную, а ионную кристаллическую решетку (см. гл. V), в которой каждый ион окружен несколькими ионам» противоположного знака. При этом все связи данного иона с соседними ионами равноценны, так что весь кристалл можно рассматривать как единую гигантскую «молекулу».
Как указывалось в § 34, атомы неметаллов характеризуются положительными значениями сродства к электрону: при присоединении электрона к такому атому выделяется энергия. Однако присоединение второго электрона к атому любого неметалла требует затраты энергии, так что образование простых многозарядных анионов (например, O2-, N3- ) оказывается энергетически невыгодным. Поэтому в таких соединениях, как оксиды (BaO, Al2O3 и др.) или сульфиды (например, ZnS, CuS), не образуется «чисто» ионная связь: здесь химическая связь всегда носит частично ковалентный характер.
Рис. 54. Поляризация иона в электрическом поле.
- 145 -
Вместе с тем, многозарядные сложные анионы SO42-, CO32-, PO43- и т. п.) могут быть энергетически устойчивыми, поскольку избыточные электроны распределены между несколькими атомами, так что эффективный заряд каждого из атомов не превышает заряда электрона.
Но даже в типичных ионных соединениях, например, в галогенидах щелочных металлов, не происходит полного разделения отрицательного и положительного зарядов, т. е. полного перехода электрона от одного атома к другому. Например, в кристалле NaCl эффективный отрицательный заряд атома хлора составляет лишь 0,94 заряда электрона; таким же по абсолютной величине положительным зарядом обладает и атом натрия.
Неполное разделение зарядов в ионных соединениях можно объяснить взаимной поляризацией ионов, т. е. влиянием их друг на друга, которое приводит к деформации электронных оболочек ионов. Причиной поляризации всегда служит действие электрического поля (см., например, рис. 54, пунктиром показана деформация электронной оболочки иона в электрическом поле), смещающего электроны и ядра атомов в противоположных направлениях. Каждый ион, будучи носителем электрического заряда, является источником электрического поля. Поэтому, взаимодействуя, противоположно заряженные ионы поляризуют друг друга.
Наибольшее смещение испытывают при поляризации электроны внешнего слоя; в первом приближении можно считать, что деформации подвергается только внешняя электронная оболочка. Однако под действием одного и того же электрического поля различные ионы деформируются в разной степени. Иначе говоря, поляризуемость различных ионов неодинакова: чем слабее связаны внешние электроны с ядром, тем легче поляризуется ион, тем сильнее он деформируется в электрическом поле. У ионов одинакового заряда, обладающих аналогичным строением внешнего электронного слоя, поляризуемость возрастает с увеличением размеров иона, так как внешние электроны удаляются все дальше от ядра, экранируются все большим числом электронных слоев и в результате слабее удерживаются ядром. Так, у ионов щелочных металлов поляризуемость возрастает в ряду
Li+<Na+<K+<Rb+<Cs+
Точно так же поляризуемость ионов галогенов изменяется в следующей последовательности:
F-<Cl-<Br-<I-
Превращение атома в положительно заряженный ион всегда приводит к уменьшению его размеров (см. стр. 95). Кроме того, избыточный положительный заряд катиона затрудняет деформацию его внешних электронных облаков.
- 146 -
Напротив, отрицательно заряженные ионы всегда имеют большие размеры, чем нейтральные атомы, а избыточный отрицательный заряд приводит здесь к отталкиванию электронов и, следовательно, к ослаблению их связи с ядром. По этим причинам поляризуемость анионов, как правило, значительно выше поляризуемости катионов.
Поляризующая способность ионов, т. е. их способность оказывать деформирующее воздействие на другие ионы, также зависит от заряда и размера иона. Чем больше заряд иона, тем сильнее создаваемое им электрическое поле; следовательно, наибольшей поляризующей способностью обладают многозарядные ноны. При одном и том же заряде напряженность электрического поля вблизи иона тем выше, чем меньше его размеры. Поэтому поляризующая способность ионов одинакового заряда и аналогичного электронного строения падает с увеличением ионного радиуса. Так, в ряду катионов щелочных металлов поляризующая способность изменяется в порядке, обратном порядку изменения поляризуемости: