Алгоритм изобретения - Генрих Альтшуллер
Шрифт:
Интервал:
Закладка:
направленность мысли, отсутствие беспорядочных скачков, суетливых метаний;
постоянная ориентировка на ИКР, стремление получить результат, расплатившись предельно-минимальным устройством;
умение легко преодолевать психологические барьеры (термин «контейнер» тянул к идее использования пакетиков, но Р. Султанов тут же отметил: контейнер — название условное. Потому что оболочка или лента — тоже контейнеры...);
хорошее владение основными приемами устранения технических противоречий, когда малейшая подсказка анализа воспринимается как ясное указание применить тот или иной прием (были использованы приемы предварительного исполнения, отброса ненужных частей, динамизации объекта).
* * *Теперь я приведу несколько задач для самостоятельного решения. Это учебные задачи: в их условиях содержатся все сведения, необходимые для решения. Каких-либо отраслевых знаний не требуется. Кроме того, поскольку задачи учебные, достаточно лишь в самом общем виде найти принцип решения.
Не ищите решение перебором вариантов. Пытаясь отгадывать (по знакомому методу «а если сделать так...»), вы лишь бесполезно затратите время. Если удастся правильно угадать ответ, ваше творческое мастерство от этого не повысится. Даже самые простые задачи надо решать по системе, это нужно для тренировки изобретательских навыков.
Решайте задачу так, как будто оценка ставится не за полученный ответ, а только за ход решения. Считайте, что самое важное — четко выстроить лесенку ответов на вопросы. Эта лесенка должна обладать двумя свойствами: первое — цельность, отсутствие логических разрывов; второе — наличие какого-то неожиданного поворота. Вспомните решение задачи 7: уже в ИКР мы пришли к выводу, что нужно получить трение без трения. Здравый смысл уводил в сторону, но мы стали последовательно искать трение без трения и движение без движения...
Задача 9Воздух, подаваемый в аквариум, позволяет в сравнительно небольшом объеме воды содержать много рыбешек. Поэтому давно возникла мысль использовать аналогичный прием для интенсификации рыбоводства в озерах, прудах и т. п. Беда, однако, в том, что способ этот неэкономичен: лишь небольшая часть воздуха успевает раствориться в воде, основная же его масса возвращается в атмосферу. Для комнатного аквариума это не так страшно — маленький моторчик справляется с делом. Но в озерах иные масштабы; потребовалось бы возле каждого озера строить мощную компрессорную установку, прокладывать разветвленную систему труб и т. д.
Нужен иной способ — несложный, экономичный и, конечно, безвредный для рыб. Поэтому, в частности, не надо использовать реактивы, выделяющие кислород.
Задача совсем простая. Попробуйте ее решить сразу (без анализа) по таблице типовых приемов.
Задача 10При полировке оптических стекол используют дерево и ткани, а в последние годы — смолы и пластмассы. В зону соприкосновения стекла и инструмента подается водная взвесь полировального порошка.
Однако этот традиционный способ далек от совершенства. Полировку приходится вести на низких скоростях, так как смолы, ткани, дерево и пластмассы с увеличением числа оборотов сильно разогреваются и теряют необходимые качества.
Как повысить скорость обработки?
Вероятно, вы сразу подумаете о подаче охлаждающей жидкости: пусть вместо водной взвеси будет взвесь полировального порошка в какой-нибудь охлаждающей жидкости. Такой способ известен, он дает не очень хорошие результаты. Представьте себе полировальник в виде небольшой подушки, которая быстро вращается, плотно прижимаясь к стеклу. Как подавать охлаждающую жидкость? Сбоку? Но ведь тепло выделяется под подушкой — там, где в данный момент прижат полировальник. Устроить сквозные каналы в полировальнике? Тут мы наталкиваемся на противоречие: чем больше в полировальнике каналов, тем равномернее будет подача жидкости, но тем хуже будет работать сам полировальник, ибо он будет состоять в основном из дырок... Словом, дырчатый полировальник — не самая удачная идея.
Это тоже очень простая задача. Решите ее, используя таблицу типовых приемов.
Задача 11Для испытания материалов на длительную прочность в условиях высоких температур и агрессивных сред используют прочные камеры — сейфы. К образцу материала прикрепляют груз, после чего заполняют камеру агрессивным веществом, герметично закрывают и включают систему обогрева (тепловые элементы размещены в стенках камеры). Вес груза — от 0,02 кг до 2 кг.
Основная трудность при таких испытаниях связана с определением момента разрыва образца. Правда, здесь не требуется особой точности. Достаточно, если момент обрыва будет зафиксирован с точностью до нескольких секунд, так как испытания ведутся иногда в течение многих дней. Сложность в другом: трудно обеспечить надежность сигнальных устройств, размещенных внутри камеры в сильно агрессивной среде. Нужно, чтобы момент обрыва определялся снаружи. Аппаратура, улавливающая шум падения груза, не годится — она слишком сложна и ненадежна.
Примем для определенности, что камера имеет размеры 0,4 × 0,3 м × 0,3 м, а толщина стальных стенок — около 10 мм. Итак, нужен предельно простой и надежный способ регистрации момента разрыва образца. Помните: не должно быть ни одного сквозного отверстия в стенках камеры!
Начните анализ задачи с шага 2—3.
Задача 12Имеется пневматический конвейер. Он представляет собой наклонную трубку, по дну которой снизу вверх — под действием потока воздуха — перемещаются (катятся) мелкие штучные грузы. В нашем случае — помидоры. Трубка идет с этажа на этаж, в нескольких местах меняет направление (для наглядности можно считать, что труба расположена вдоль обычной лестницы). Недостаток системы: помидоры налетают друг на друга, ударяются, портятся.
Нужен способ пневматической транспортировки, при котором грузы будут двигаться по заданной программе с абсолютной надежностью: на определенном расстоянии друг от друга и в определенном темпе. Отказываться от пневматической системы транспортировки крайне нежелательно: потребуется новое оборудование, а его у нас нет.
Начните решение задачи с шага 2—3.
Задача 13В электронных схемах высокой частоты применяют так называемые линии задержки. Они служат для сдвига выходного сигнала по времени. Линии задержки представляют собой слоистую конструкцию — слои материала с низким и высоким омическими сопротивлениями чередуются. Такими парами могут быть, например, стекло и сталь, сплав Вуда и медь. Толщина слоев составляет 0,1—0,01 мм, точность изготовления требуется высокая.
Известные способы изготовления (прессование, прокатка) малопроизводительны, дороги, дают много брака. Из некоторых пар вообще не удается получить слоистую конструкцию: материалы, составляющие пару, обычно резко отличаются по температуре плавления (стекло — до 800°, сталь — 1500°, сплав Вуда — 70°, медь — 1083°); на тонкую пластину из сплава Вуда наложить раскаленную медную пластину, сплав Вуда просто растает.
Нужен принципиально новый способ изготовления слоистых конструкций.
Эта задача сложнее двух предыдущих: барьеры на пути к ее решению весьма высокие. Начните решение с шага 2—2.
Задача 14Трубопровод далеко не всегда удается загрузить каким-либо одним нефтепродуктом. Поэтому была предложена последовательная транспортировка, при которой разные нефтепродукты передаются по одному трубопроводу друг за другом, так сказать, встык. Способ этот в принципе имеет большое преимущество: вместо нескольких параллельных трубопроводов можно построить один. Но широкого распространения последовательная перекачка пока не получила.
Причина в том, что при перекачке одного горючего вслед за другим в зоне их соприкосновения неизбежно происходит смешивание. В связи с этим возникают сложные технические проблемы. Как, например, точно установить, когда кончается чистый бензин и начинается смесь его с дизельным топливом? А где кончается эта смесь и начинается последующий чистый продукт? Как своевременно отделить смесь от чистых продуктов и избежать загрязнения топлива, ранее поступившего в резервуары конечного пункта перекачки?
До 1960 года почти на всех магистральных нефтепроводах применялся ручной способ контроля: во время очередного цикла перекачки лаборанты контрольных пунктов в любую погоду, днем и ночью часами просиживали в сырых колодцах трубопровода, производя многочисленные анализы. Делалось это кустарно: прямо из трубопровода брали пробу, наливали ее в колбу и по уровню плавающего в ней поплавка определяли плотность нефтепродукта. Но разность плотности светлых горючих весьма незначительна, и «ловить» таким путем границы смешения было почти невозможно. В результате за каждый цикл перекачки только по одному трубопроводу среднего диаметра (500 мм) вместе со смесью уходило в брак от 800 до 1200 тонн чистых продуктов.