Категории
Самые читаемые
RUSBOOK.SU » Научные и научно-популярные книги » Научпоп » Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - Сасскинд Леонард

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - Сасскинд Леонард

Читать онлайн Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - Сасскинд Леонард

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 36 37 38 39 40 41 42 43 44 ... 88
Перейти на страницу:

Интересно, что в случаях Галилея и Больцмана противоречия были выявлены не в результате нового экспериментального открытия. Ключом каждый раз оказывался правильный мысленный эксперимент. Галилеев эксперимент по бросанию камней и Больцманов — по обращению времени никогда не были осуществлены; достаточно было лишь размышлять о них. Но величайшим мастером мысленного эксперимента был Альберт Эйнштейн.

Два глубочайших противоречия не давали покоя в начале XX века. Первым был конфликт между принципами ньютоновской физики и максвелловской теории света. Принцип относительности, который мы привыкли ассоциировать с Эйнштейном, на самом деле восходит к Ньютону и даже к Галилею. Это простое утверждение о том, как выглядят законы физики из разных систем отсчёта. Чтобы понять это, представим себе циркового артиста, жонглирующего шарами, который сел на поезд, чтобы отправиться в другой город. В дороге он захотел немного потренироваться. Но он никогда не жонглировал в движущемся поезде и задаётся вопросом: «Понадобится ли мне компенсировать движение поезда всякий раз, когда я подбрасываю шар в воздух и ловлю его? Надо прикинуть. Поезд движется на запад. Так что ловить брошенный шар я должен немного восточнее». Он пробует поступить так с одним шаром. Пока тот летит, ловящая рука движется на восток, и — бах! — шар падает на пол. Жонглёр пробует снова, на этот раз уменьшая величину восточной компенсации. Опять неудача.

Надо сказать, что поезд попался очень высокого качества. Рельсы, по которым он идёт, столь гладкие, а подвеска у вагонов такая замечательная, что движение совершенно неощутимо для пассажиров. Жонглёр усмехается и говорит сам себе: «Понятно. Я просто не заметил, как поезд затормозил и остановился. Пока мы не поедем, я могу упражняться обычным образом. Вернусь-ка я обратно к старым добрым правилам жонглирования». И тут всё получается замечательно.

Вообразите же удивление жонглёра, когда, взглянув в окно, он видит местность, уносящуюся назад со скоростью добрых 150 км/ч. Глубоко озадаченный жонглёр просит разъяснений у своего друга клоуна (на самом деле гарвардского профессора физики на каникулах). И вот что отвечает клоун: «Согласно принципам ньютоновской механики, законы движения одинаковы во всех системах отсчёта, если они равномерно движутся друг относительно друга. Поэтому правила жонглирования совершенно одинаковы и в системе отсчёта, покоящейся на земле, и в системе отсчёта, движущейся вместе с плавно идущим поездом. Невозможно обнаружить движение поезда с помощью какого-либо эксперимента, целиком выполняемого внутри железнодорожного вагона. Только взглянув в окно, можно сказать, что поезд движется по отношению к земле, и даже тогда вы не сможете сказать, что именно движется — поезд или земля. Все движения относительны». Поражённый жонглёр берёт свои шары и продолжает упражняться.

Все движения относительны. Движение железнодорожного вагона со скоростью 150 км/ч, движение Земли вокруг Солнца со скоростью 30 км/с и движение Солнечной системы вокруг галактики со скоростью 200 км/с — всё это необнаружимо, пока протекает гладко.

Гладко? Что это значит? Рассмотрим жонглёра в момент отправления поезда. Внезапно состав трогается. При этом не только пиры смещаются назад, но и сам жонглёр может повалиться на Пол. Когда поезд останавливается, тоже происходит нечто подобное. Или, допустим, поезд проходит по резкому изгибу рельсов. Определённо во всех этих ситуациях правила жонглирования потребуют модификации. Что за новый ингредиент в них добавится? Ответ — ускорение.

Ускорение означает изменение скорости. Когда железнодорожный вагон начинает движение или когда он неожиданно останавливается, скорость меняется и возникает ускорение. А что в случае прохождения поворота? Это менее очевидно, но истина всё же в том, что и тут скорость изменяется — не по величине, но по направлению. Для физика любое изменение скорости — как по величине, так и по направлению — это ускорение. Так что принцип относительности надо уточнить:

Законы физики одинаковы во всех системах отсчёта, которые равномерно (без ускорения) движутся друг по отношению к другу. Принцип относительности был впервые сформулирован примерно за 250 лет до рождения Эйнштейна. И почему же тогда Эйнштейн так знаменит? Потому что он обнаружил очевидный конфликт между принципом относительности и другим принципом физики, который можно назвать принципом Максвелла. Как обсуждалось в главах 2 и 4, Джеймс Клерк Максвелл открыл современную теорию электромагнетизма — теорию всех электрических и магнитных сил в природе. Важнейшее достижение Максвелла состояло в раскрытии великой тайны света. Свет, доказал он, состоит из волн электрических и магнитных возмущений, движущихся сквозь пространство, подобно волнам по поверхности моря. Но для нас важнее всего то, что, как доказал Максвелл, свет в пустом пространстве всегда движется в точности с одной и той же скоростью — около 300 000 км/с2[87]. Именно это я и называю принципом Максвелла:

Независимо от того, как был порождён свет, он движется в пустом пространстве всегда с одной и той же скоростью.

Но теперь у нас возникает проблема — серьёзное противоречие между двумя принципами. Эйнштейн был не первым, кто обеспокоился противоречием между принципом относительности и принципом Максвелла, но он более чётко увидел проблему. И пока другие разбирались с экспериментальными данными, Эйнштейн, мастер мысленного эксперимента, разбирался с экспериментом, поставленным исключительно внутри его головы. По собственным воспоминаниям Эйнштейна, в 1895 году, когда ему было 16 лет, он сформулировал следующий парадокс. Представив себя в железнодорожном вагоне, движущемся со скоростью света, он наблюдает световую волну, движущуюся рядом с ним в том же направлении. Увидит ли он световой луч, стоящий неподвижно?

Во времена Эйнштейна не было вертолётной техники, но мы можем вообразить его парящим над морем со скоростью, в точности равной скорости океанских волн. Волны будут казаться застывшими. Точно так же, рассуждал шестнадцатилетний юноша, пассажир вагона (напоминаю, движущегося со скоростью света) обнаружит совершенно неподвижную световую волну. Каким-то образом в молодом возрасте Эйнштейн уже знал об уравнениях максвелловской теории достаточно для понимания того, что нарисованная им картина невозможна: принцип Максвелла гласит, что свет всегда движется с одинаковой скоростью. Если законы природы одинаковы во всех системах отсчёта, тогда принцип Максвелла можно применить и к движущемуся поезду. Принцип Максвелла и принцип относительности Галилея шли лоб в лоб.

Эйнштейн расчёсывал свой зуд десять лет, пока не нашёл выхода из положения. В 1905 году он написал свою знаменитую статью «К электродинамике движущихся тел»[88], в которой сформулировал совершенно новую концепцию пространства и времени — специальную теорию относительности. Она радикально изменила представления о расстоянии и длительности, а в особенности то, что мы подразумеваем под одновременностью двух событий.

В тот же период, когда Эйнштейн придумывал специальную теорию относительности, он был озадачен ещё одним парадоксом. В начале XX века физики были в крайнем недоумении из-за чернотельного излучения. Вспомните главу 9, где я объяснял, что чернотельное излучение — это электромагнитная энергия, испускаемая святящимся горячим объектом. Представьте себе совершенно пустой закрытый контейнер при температуре абсолютного нуля. Внутри сосуда будет идеальный вакуум. Теперь давайте подогреем сосуд снаружи. Внешние стенки начинают испускать чернотельное излучение, то же происходит и с внутренними стенками. Их излучение попадает в закрытое пространство внутри сосуда, и оно заполняется чернотельным излучением. Электромагнитные волны разной длины мечутся по объёму, отскакивая от внутренних стенок: красный свет, голубой, инфракрасный и все остальные цвета спектра.

1 ... 36 37 38 39 40 41 42 43 44 ... 88
Перейти на страницу:
На этой странице вы можете бесплатно скачать Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - Сасскинд Леонард торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит