Основы физиологии высшей нервной деятельности - Александр Коган
Шрифт:
Интервал:
Закладка:
Третий вид корковых нейронов, принимающих участие в обработке зрительной информации, характерен для рецептивных полей с комплексным возбудительным центром и тормозными зонами, ограничивающими размеры светового стимула, в частности длины его полоски. Эти клетки избирательно реагируют на ориентацию перепадов освещенности, линий и углов (главное, на их угловые размеры), оценивают направление движения стимулов. Такие нейроны называют сверхсложными.
Предполагают, что простые, сложные и сверхсложные клетки представляют три уровня синтеза результатов анализа зрительной информации. Свойства простой корковой клетки определяет конвергенция на ней сигналов от клеток латерального коленчатого тела, свойства сложной клетки — конвергенция на ней от простых клеток. Вопрос о происхождении сверхсложных клеток пока является дискуссионным.
Аналитико-синтетические процессы обеспечивают поэтапную обработку зрительной информации, направленную на восприятие целостного образа объекта. Изучение нейрофизиологических механизмов, осуществляющих эту обработку на разных этапах зрительного пути привело к представлению о четырех основных уровнях формирования целостного зрительного образа (В.Д. Глезер, 1985).
На первом уровне нейроны сетчатки и латерального коленчатого тела оценивают общую освещенность, выделяют сигналы из шума, подчеркивают контуры и дробят сетчаточное изображение на фрагменты.
На втором уровне нейроны 17-го поля коры определяют пространственно-частотные и ориентационные характеристики этих фрагментов. Здесь формируются группы нейронов, настроенные на разные ориентации и частоты, но направленные на один фрагмент. Они определяют его спектральный состав и связь с фрагментами иного спектрального состава.
На третьем уровне нейроны 19-го поля зрительной коры оценивают пространственное распределение возбуждения в нейронах предыдущего уровня и сопоставляют фрагменты изображения на основе их спектрального состава. Здесь также работают модули из нейронов разных свойств, обрабатывающих один участок зрительного поля, в результате чего выделяются отдельные компоненты фигур.
Наконец, четвертый уровень включает в себя обучающиеся нейроны, расположенные в нижневисочной и заднетеменной коре (НВК и ЗТК). Путем синтеза информации, поступающей от нервных механизмов предыдущего уровня, НВК обеспечивает опознание зрительного образа, ЗТК — его конкретизацию в пространстве.
Исследования процессов анализа и синтеза в процессах зрительного восприятия показали их значительную изменчивость в зависимости от многих условий: световой и темновой адаптации, контраста изображения с фоном, интенсивности светового стимула, внимания и т.п. На рис. 55 показаны изменения рецептивного поля коркового нейрона в разных условиях световой стимуляции. Эти и другие факты послужили основанием для гипотезы о том, что свойства нейронов зрительной коры определяются не столько жесткими отношениями конвергенции сигналов с предыдущих уровней, сколько адаптивной динамикой внутрикоркового взаимодействия нейронов, особенно тормозных.
Рис. 55. Изменения размеров рецептивного поля коркового нейрона при разном уровне зрительной адаптации (А), контраста светового стимула с фоном (Б) и энергии вспышки света (В) (по И.А. Шевелеву):
1, 2, 3 — реакция на вспышку (1 — 70 лк на фоне 0,1 лк, 2 — 0,7 лк на фоне 0,1 лк, 3 — 70 лк на фоне 10 лк), 4, 5 — реакция на световой квадрат поля (4 — 1 град2, 35 лк, 5 — 0,5 град2, 70 лк)
Изучения межнейронных отношений привели к заключению, что гибкая приспособительная изменчивость интегративных механизмов, в частности обработки зрительной информации, имеет в своей основе не жестко фиксированные связи между нейронами, а их вероятностное участие в формировании пространственно-временных мозаик возбуждающихся и тормозящихся нейронов. Мощное влияние на организацию аналитико-синтетической деятельности зрительной системы оказывают экологические различия образа жизни. Так, в зрительной коре у кошки преобладает ориентационная избирательность, у приматов — цветоразличение и стереоскопическое зрение, у белки — избирательность к быстрым движениям.
Многие принципы и способы организации нейрофизиологических механизмов аналитико-синтетических процессов зрительного восприятия оказываются общими и проявляются в деятельности всех сенсорных систем. Это относится прежде всего к механизмам оценки биологического значения действующих раздражителей. Такая оценка происходит на сравнительно высоком уровне интеграции поступившей сенсорной информации, ее сигнальной роли и текущего состояния организма. При этом мономодальные образы синтезируются в полимодальные и с учетом состояния организма, его потребностей и жизненного опыта формируется динамичный целостный образ воспринимаемого явления. В зависимости от того, является ли этот образ показателем благоприятных или опасных событий, возникает и соответствующая эмоциональная окраска восприятия.
Сложными процессами аналитико-синтетической деятельности мозга обусловлено возникновение новых видов приспособительного поведения животных. При этом формируются нервные механизмы объединения афферентных и эффекторных структур в целостную организацию достижения полезного результата, как это представлено в учении о функциональной системе (П.К. Анохин, 1968). Систематические исследования нейрофизиологического механизма формирования функциональной системы при осуществлении акта приспособительного поведения выявили определенную связь динамики вызванных потенциалов и нейронной активности с деятельностью ее основных блоков (афферентный синтез, принятие решения, программа действия, акцептор результатов действия).
На рис. 56 схематически представлена динамика этих показателей нервных процессов на микро- и макроуровне при организации двигательной реакции. Сигнальное раздражение через 80 мс вызывало движение (миограмма). Во время первичного ответа ВП информация от акцептора результатов действия предыдущей двигательной реакции активирует нейроны, участвовавшие в этой реакции, и влияет на начало организации афферентного синтеза. Негативной волне первичного ответа соответствуют завершение синтеза афферентных сигналов и этап принятия решения, когда активны нейроны, участвовавшие в достижении нужного результата в любых обстоятельствах. Окончание негативной волны ВП предшествует началу ответного движения и соответствует этапам формирования программы действия и акцептора результатов предстоящего действия, где участвуют нейроны, активность которых ранее приводила к нужному результату.
Рис. 56. Соотношение электрических показателей деятельности мозга с узловыми механизмами функциональной системы элементарного поведенческого акта (по В.Б. Швыркову):
1 — вызванный потенциал, 2 — электромиограмма ответного движения, 3, 4, 5 — нейроны, участвующие в формировании разных звеньев функциональной системы, 6 — схема узловых механизмов функциональной системы и их взаимосвязей, АРД — акцептор результатов действия, С — сличение параметров результата (ПР) предыдущего поведения (Рс), Д — действие, АС — афферентный синтез, Р — принятие решения, ПД — программа действия, «С — Р» — интервал «стимул — реакция»; стрелкой и вертикальной линией обозначен момент подачи сигнала
Нейрофизиологические механизмы феномена переключения условных рефлексов исследовали на системном и нейронном уровнях. Одновременная регистрация электрической активности гиппокампа, миндалины и коры, электрокардиограммы и дыхания у собак при переключении звукового условного раздражителя (был сигналом пищевой реакции, стал сигналом оборонительной) выявила, что эмоциональное напряжение сопровождается выраженным тета-ритмом гиппокампа, одышкой и учащением сердечных сокращений. Существуют и другие указания на важную роль гиппокампа в изменениях эмоционального напряжения. Переключение звукового условного раздражителя с пищевого на оборонительный рефлекс у кроликов вызывало перестройки импульсных ответов нейронов гиппокампа, зрительной и ассоциативной коры. При этом изменялись не только частота и другие характеристики ответного разряда, но и импульсация нейрона в межимпульсные периоды, свидетельствуя об изменении центрального тонуса.