Категории
Самые читаемые
RUSBOOK.SU » Научные и научно-популярные книги » Физика » 2a. Пространство. Время. Движение - Ричард Фейнман

2a. Пространство. Время. Движение - Ричард Фейнман

Читать онлайн 2a. Пространство. Время. Движение - Ричард Фейнман

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 18
Перейти на страницу:

Еще одна причина, по которой следует за­няться поглубже алгеброй: хотя многие из вас уже знакомились с алгеброй в средней школе, но это было только первым знакомством и многие формулы еще непривычны, поэтому стоит еще раз вспомнить алгебру, чтобы не тратить на формулы столько же сил, сколько их уйдет на изучение самой физики.

То, чем мы займемся, с точки зрения математики, не будет настоящей алгеброй. Математик главным образом интересуется тем, как изложить то или иное математическое утверждение и какие предположения обязательны при выводе теоремы, а какие нет. Для нас важнее результат доказательства. Например, тео­рема Пифагора интересна для нас потому, что в ней сообщается, что сумма квадратов катетов прямоугольного треугольника равна квадрату гипотенузы; это очень интересный факт, и мы будем использовать его, не заботясь о том, действительно ли это доказанная Пифагором теорема или просто аксиома. В том же самом духе мы изложим элементарную алгебру, по возмож­ности чисто качественно. Мы говорим элементарная алгебра потому, что существует ветвь математики, называемая высшей алгеброй, где может оказаться неверным, что ab=ba, но таких вещей мы касаться не будем.

Изучение алгебры начнем с середины. Предположим, что нам уже известно, что существуют целые числа, что есть нуль и что значит увеличить число на единицу. Не говорите, пожалуй­ста: «Вот так середина!», потому что для математика это сере­дина, ведь он знает теорию множеств и может вывести все эти свойства целых чисел. Но мы не будем вторгаться в область философии математики и математической логики, а ограни­чимся предположением, что нам известны целые числа и мы умеем считать. Если взять целое число а и прибавить к нему b раз по единице, мы получим число а+b; этим определяется сложение целых чисел.

Определив сложение, проделаем вот что: начнем с нуля и прибавим к нему b раз число а; таким образом мы определим умножение целых чисел и будем называть результат произве­дением а на b.

Теперь можно проделать ряд последовательных умножений: если умножить единицу b раз на число а, то мы возведем а в сте­пень b и запишем результат в виде аb.

Исходя из этих определений, легко доказать такие соотношения

Эти результаты хорошо известны, мы не хотим долго на них останавливаться, а выписаны они больше для порядка. Конечно, 1 и 0 обладают особыми свойствами, например а+0=а, а·1=а и а в первой степени равно а.

Составляя табличку формул (22.1), мы пользовались такими свойствами, как непрерывность и соотношение порядка; дать им определение очень трудно: для этого создана целая наука. Кроме того, мы выписали, конечно, слишком много «правил»; некоторые из этих правил можно вывести из других, но не будем на этом останавливаться.

§ 2. Обратные операции

Кроме прямых операций сложения, умножения и возведе­ния в степень, существуют обратные операции. Их можно определить так. Предположим, что нам заданы а и с; как найти b, удовлетворяющее уравнениям а+b=с, ab=c, ba=с? Если а+b=с, то b определяется при помощи вычитания: b=с-а. Столь же проста операция деления: если ab=c, то b=с/а; это решение уравнения ab=c «задом наперед». Если вам встретится степень: ba=с, то надо запомнить, что b называется корнем а-й степени из с. Например, на вопрос: «Какое число, будучи возведенным в куб, дает 8?» — следует отвечать: «Кубический ко­рень из 8, т. е. 2». Обратите внимание, что, когда дело доходит до степени, появляются две обратные операции. Действительно, ведь раз аbи bа различные числа, то можно задать и такой вопрос: «В какую степень надо возвести 2, чтобы получить 8?» В этом случае приходится брать логарифм. Если аb=с, то b=logac. He надо пугаться громоздкой записи числа b в этом слу­чае; находить его так же просто, как и результаты других обрат­ных операций. Хотя логарифм «проходят» гораздо позже корня, это такая же простая вещь: просто-напросто это разного сорта решения алгебраических уравнений. Выпишем вместе прямые и обратные операции:

В чем же идея? Выписанные соотношения верны для целых чисел, потому что они выводятся из определений сложения, ум­ножения и возведения в степень. Подумаем, нельзя ли расши­рить класс объектов, которые по-прежнему будут обозначаться буквами а, b и с и для которых по-прежнему будут верны все сформулированные нами правила, хотя сложение уже нельзя будет понимать как последовательное увеличение числа на единицу, а возведение в степень — как последовательное пе­ремножение целых чисел.

§ 3. Шаг в сторону и обобщение

Если кто-нибудь, усвоив наши определения, приступит к решению алгебраических уравнений, он быстро натолкнется на неразрешимые задачи. Решите, например, уравнение b=3-5. Вам придется в соответствии с определением вычитания найти число, которое дает 3, если к нему добавить 5. Перебрав все целые положительные числа (а ведь в правилах говорится только о таких числах), вы скажете, что задача не решается. Однако можно сделать то, что потом станет системой, великой идеей: наткнувшись на неразрешимую задачу, надо сначала отойти в сторону, а затем обобщить. Пока алгебра состоит для нас из правил и целых чисел. Забудем о первоначальных определениях сложения и умножения, но сохраним правила (22.1) и (22.2) и предположим, что они верны вообще не только для целых положительных чисел (для них эти правила были выведены), а для более широкого класса чисел. Раньше мы за­писывали целые положительные числа в виде символов, чтобы вывести правила; теперь правила будут определять символы, а символы будут представителями каких-то более общих чисел. Манипулируя правилами, можно показать, что 3-5=0-2. Давайте определим новые числа: 0-1, 0-2, 0-3, 0-4 и т. д. и назовем их целыми отрицательными числами. После этого мы сможем решить все задачи на вычитание. Теперь вспомним и о других правилах, например a(b+c)=ab+ac; это даст нам правило умножения отрицательных чисел. Перебрав все пра­вила, мы увидим, что они верны как для положительных, так и для отрицательных чисел.

Мы значительно расширили область действия наших пра­вил, но достигли этого ценой изменения смысла символов.

Уже нельзя, например, сказать, что умножить 5 на -2 - значит сложить 5 минус два раза. Эта фраза бессмысленна. Тем не менее, пользуясь правилами, вы всегда получите вер­ный результат.

Возведение в степень приносит новые хлопоты. Кто-нибудь обязательно захочет узнать, что означает символ а(3-5). Мы зна­ем, что 3-5 это решение уравнения (3-5)+5=3. Следовательно, мы знаем, что а(3-5)а5=а3. Теперь можно разделить на а5, тогда а(3-5)=а3/а5. Еще одно усилие, и вот окончательный ре­зультат: а(3-5) =1/а2. Таким образом, мы установили, что воз­ведение числа в отрицательную степень сводится к делению единицы на число, возведенное в положительную степень. Все было бы хорошо, если бы 1/а2не было бессмысленным символом. Ведь а — это целое положительное или отрицательное число, значит, а2 больше единицы, а мы не умеем делить единицу на числа, большие чем единица!

Система так система. Натолкнувшись на неразрешимую за­дачу, надо расширить царство чисел. На этот раз нам трудно делить: нельзя найти целого числа ни положительного, ни от­рицательного, которое появилось бы в результате деления 3 на 5. Так назовем это и другие подобные ему числа рациональ­ными дробями и предположим, что дроби подчиняются тем же правилам, что и целые числа. Тогда мы сможем оперировать дробями так же хорошо, как и целыми числами.

Еще один пример на степень: что такое а3/5? Мы знаем толь­ко, что (3/5) 5=3, ибо это определение числа 3/5, и еще, что (а3/5)5 =a(3/5)5, ибо это одно из правил. Вспомнив определение

корня, мы получим а(3/5)= . Определяя таким образом дро­би, мы не вводим никакого произвола. Сами правила следят за тем, чтобы подстановка дробей вместо написанных нами сим­волов не была бессмысленной процедурой. Замечательно, что эти правила справляются с дробями так же хорошо, как и с целыми числами (положительными и отрицательными)!

1 2 3 4 5 6 7 8 9 10 ... 18
Перейти на страницу:
На этой странице вы можете бесплатно скачать 2a. Пространство. Время. Движение - Ричард Фейнман торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит