Большая энциклопедия техники - Коллектив авторов
Шрифт:
Интервал:
Закладка:
Лампы обратной волны используются в сигнал-генераторах и свип-генераторах с широким диапазоном для радиотехнических измерений, также в быстро перестраиваемых приемниках, задающих генераторах с быстро перестраивающейся частотой и т. д.
Американский ученый-физик С. Мильман в 1950 г. обнаружил генерирование колебаний СВЧ, связанных с электронным потоком и обратной волной. Американцы Р. Компфнер и Н. Уильямс в 1953 г. ввели термин «лампа обратной волны» в научный дискурс.
Электронная пушка лампы обратной волны создает поток электронов, которые двигаются по прямой линии. Встречные пластины образовывают замедляющую систему, через которую проходит поток электронов. За счет этого в замедляющей системе возбуждается электромагнитная волна, направление которой прямо противоположно направлению движения электронов. Электрическое поле бегущей волны влияет на электронный поток, в результате чего формируются сгустки электронов. Сгустки тормозятся электрическим полем. Чтобы электронный поток сфокусировать, используют электростатическую систему фокусировки или направленное по оси потока магнитное поле.
Лампы обратной волны различаются по мощности колебаний, которая варьируется от 5 до 100 МВт.
Различают два вида ламп обратной волны – лампа типа О и лампа типа М.
В лампе обратной волны типа О СВЧ-поле тормозит электроны, в результате чего кинетическая энергия электронов преобразуется в энергию СВЧ-поля.
Лампы другого типа преобразуют потенциальную энергию в СВЧ-поле. Электроны при движении от катода к аноду тормозят и разгоняются, смешиваются между собой. От напряжения замедляющейся системы зависит непосредственно частота излучения в лампах обоих типов.
Генераторы, применяемые на лампах обратной волны типа М, могут обеспечивать выходную мощность в разных частотных диапазонах. В дециметровом диапазоне мощность может равняться десятку кВт, в сантиметровом – нескольким единицам кВт. Подобные генераторы по своей мощности занимают первое место среди генераторов СВЧ-колебаний с электронной перестройкой частоты. В настоящее время они являются самыми мощными генераторами СВЧ-колебаний с электронной перестройкой частоты. Если генераторы синхронизированы, то их характеристиками являются высокая стабильность частоты и низкий уровень шума, что помогает для использования их в различных областях.
Волна СВЧ при изменении частоты лампы обратной волны отражается и поступает в замедляющую систему. Изменение выходной мощности изменяется, если отраженная таким образом волна взаимодействует с электронным потоком. Для того чтобы не изменять мощность, включается поглотитель, находящийся на конце замедляющей системы. При изменении напряжения катода и замедляющей системы изменяется и частота колебаний в лампе обратной волны. В современных лампах обратной волны диапазон частот колебаний изменяется от единиц ГГц до единиц ТГц. При уменьшении напряжения увеличивается крутизна электронной перестройки ламповой частоты. Величина напряжения пропорциональна выходной мощности колебаний лампы, которая изменяется от милливатт до нескольких ватт. Мощность лампы обратной волны зависит от напряжения замедляющейся системы.
Источником энергии и звеном положительной обратной связи является электронный пучок.
Одной из разновидностей данных приборов является лампа обратной волны магнетронного типа. Лампа магнетронного типа используется в измерительной аппаратуре, различных системах связи, при генерировании радиопомех и шумов и т. д.
Линия задержки
Линия задержки – это линейный четырехполюсник. Выходной сигнал такого инерционного четырехполюсника повторяет с некоторой задержкой входной сигнал. Сигнал при вводе должен соответствовать трем параметрам: порядку времени задержки, мантиссе времени задержки, волновому сопротивлению.
Впервые линию задержки стали применять во время Второй мировой войны для того, чтобы при использовании радаров шумы и помехи, возникающие при отражении от неподвижных объектов и земли, сокращались. В радарах применялись периодические импульсы радиоволн. Радиоволны отражались и усиливались с последующим отображением на экране. Неподвижные объекты на экране радара были лишними, поэтому сигналы радиоволн при отражении делились на два. Один сигнал посылался на экран радара, другой сигнал задерживался. Возникающие при выводе на экран обоих сигналов совпадения стирались, и на экране можно было видеть лишь движущиеся объекты.
Линия задержки, кроме всего прочего, использовалась как цифровое запоминающее устройство. В состав запоминающего устройства входили трубки, наполненные ртутью, на одном из концов трубки располагался преобразователь из пьезокристалла, сочетающий в себе и динамик, и микрофон. Радарный усилитель посылал сигналы на преобразователь, который в результате получения импульса возбуждал колебания ртути. По всей трубке колебания передавались на другой пьезокристалл, который, в свою очередь, передавал их на экран. Для каждого радара необходимо индивидуальное механическое сочетание времени задержки между импульсами для нормального рабочего процесса.
Дж. П. Эккерт изобрел ртутную линию задержки для компьютеров EDVAC и UNTVAC 1. Чтобы посылать выходной сигнал на вход, был добавлен повторитель на принимающий конец ртутной линии задержки. Благодаря этому импульс, посланный в систему, функционировал до тех пор, пока не отключат электропитание. Применение ртути обосновывалось тем, что акустические сопротивления ртути и пьезокристаллов практически равны. Данное равенство приводило к минимизации энергетической потери, которая происходила при передаче сигнала от ртути к кристаллу и наоборот. Время ожидания импульса уменьшалось за счет высокой скорости звука внутри ртути. Но в использовании ртути в линиях задержки были и недостатки, такие как цена, токсичность и вес. Кроме этого, ртуть в процессе согласования акустических сопротивлений нагревалась до 40 °С, что приводило к некоторому дискомфорту во время работы. В первой цифровой вычислительной машине в памяти хранилась программа EDSAC, которая содержалась в 32 линиях задержки. В каждой подобной линии задержки удерживались по 576 бит. В UNIVAC 1 линия задержки хранила по 120 бит, что упрощало схему и увеличивало количество больших блоков памяти.
Разновидность линии задержки, ртутная ультразвуковая линия задержки, использовалась в радиолокационной технике для определения времени прохождения сигнала. В ультразвуковой линии задержки преобразуется электромеханический сигнал, для этого используются пьезоэлектрические или магнитострикционные преобразователи. Упругие волны распространяются в твердой среде линии задержки – звукопроводе – с небольшими потерями. Ультразвуковая линия задержки обладает рядом параметров, необходимых для успешной работы. К параметрам линии задержки относятся время задержки, рабочая частота, полоса пропускания, уровень ложных сигналов и температурный коэффициент задержки.
Для усовершенствования линии задержки ее синхронизировали таким образом, чтобы поступление импульсов на приемник было одновременно с готовностью компьютера принимать их и считывать. Чтобы найти нужный бит среди многочисленных других импульсов в линии задержки, компьютер сравнивал импульсы с синхроимпульсами.
Память линий задержки активно использовалась до конца 1960-х гг., она была экономична, надежна и быстра.
Линия передачи (данных)
Линия передачи (данных) – это средства, использующиеся в информационных сетях для передачи и распространения сигналов в заданном направлении. Затухание сигнала зависит от частоты и расстояния передачи, это важнейшие характеристики линии передачи.
Английский ученый О. Хевисайд еще в 1874 г. работал над теорией линий передачи, другое название которой теория телеграфных уравнений. В процессе проведения научных опытов Хевисайд предъявил ряд доказательств данной теории. Он выяснил, что емкость телеграфной линии при равномерном распределении сводит к минимуму затухание и искажение. Линия совсем не подвергается искажениям, если емкость телеграфной линии достаточно большая, а сопротивление изоляции, наоборот, малое. Благодаря теории Хевисайда телеграфная связь получила новый толчок к развитию и усовершенствованию. Всю свою жизнь Хевисайд находился не в ладах с научными кругами, поэтому его открытия и изобретения признавались ими не сразу, а спустя некоторое время.
К концу жизни этот оригинальный человек не прекращал поражать окружающих своими экстравагантными поступками. Всю домашнюю мебель он выкинул и использовал вместо нее гранитные глыбы, а свои великолепные ногти он красил в розовый цвет, поражая всех современных модниц и удивляя общественность.
В 1880-х гг. М. Пупин проводил эксперименты, в ходе которых установил способ, увеличивающий дальность передачи телеграфных линий. Дальность передачи обеспечивалась удлинительными катушками, установленными через определенные интервалы по линии передачи.