Категории
Самые читаемые
RUSBOOK.SU » Разная литература » Зарубежная образовательная литература » Вероятности и неприятности. Математика повседневной жизни - Сергей Борисович Самойленко

Вероятности и неприятности. Математика повседневной жизни - Сергей Борисович Самойленко

Читать онлайн Вероятности и неприятности. Математика повседневной жизни - Сергей Борисович Самойленко

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 29 30 31 32 33 34 35 36 37 ... 59
Перейти на страницу:
правы: все мы уникальны и в своей уникальности абсолютно одинаковы.

Глава 6. Почему уж не везет так не везет?

Говорят, жизнь похожа на зебру: то белая полоса, то черная… А еще бывает, что к одной неприятности добавляется другая: и так все непросто в жизни, а тут еще кошка рожать принялась! То густо, то пусто! Одно к одному! Но самое печальное, что когда становится хорошо и в жизни наступает светлая полоса, то мысли закрадываются нехорошие: ох, не сглазить бы… ох, не придется ли за счастье расплачиваться… Знакомое ощущение? Об этом говорит один из законов мерфологии — второй закон Чизхолма:

Когда дела идут хорошо, что-то должно случиться в самом ближайшем будущем.

Но поскольку Френсис Чизхолм в своей оригинальной работе не дает детального анализа или доказательства этого закона, мы постараемся сами выяснить, кроется ли за этим какая-либо закономерность или нам так только кажется. А если это причуды математики, можно ли определить характерную длительность или частоту полосок на теле нашей зебры и от чего эти параметры зависят?

В жизни то и дело происходят события. Иногда они вовсе не связаны друг с другом, иногда образуют цепочки причинно-следственных взаимоотношений. Рассуждения об этих связях, цепочках и предопределенности жизненного пути могут увести нас очень далеко, мы поговорим о них позже. А пока попробуем, как всегда, обойтись наименьшим количеством исходных данных для анализа нашего закона. Рассмотрим последовательность никак не связанных между собой событий и посмотрим, что удастся из нее добыть.

Синтезируем злодейку-судьбу

Наступление событий, которые никак не связаны между собой и происходят во времени случайно, описывается с помощью хорошо известного пуассоновского потока. Он соответствует многим случайным явлениям — от землетрясений до прихода покупателей в магазин.

Предположим, выполнены такие естественные условия.

1. Если есть два непересекающихся отрезка времени [t1,t2] и [t3,t4], то число событий в первом отрезке не зависит от числа событий во втором (отсутствие последействия).

2. Количество событий, произошедших на каком-либо отрезке времени, зависит только от длины отрезка, но не его положения (стационарность).

3. Вероятность, что два события происходят одновременно, пренебрежимо мала (ординарность).

Тогда можно показать, что число событий, попадающих на отрезок длины t, подчиняется распределению Пуассона. То есть вероятность Pm того, что на этом отрезке произойдет m событий, определяется так:

Число λ называется интенсивностью или плотностью потока и имеет смысл «среднего» числа наблюдений. Например, при измерении времени в днях значению параметра λ = 1/7 соответствует цепочка случайных событий, в среднем происходящих раз в неделю. Это вовсе не означает, что события будут происходить строго с частотой раз в неделю. Никакой определенной частоты у последовательности событий нет. Это среднее число событий: поскольку в году 52 недели, за год должно произойти около 52 событий (в среднем за много лет), но они будут разбросаны в году неравномерно. На рисунке 6.1 показаны 52 случайные равномерно распределенные даты в году, которые можно рассматривать как моменты появления пуассоновских событий.

Рис. 6.1. Пример построения пуассоновского потока с интенсивностью 1/7 (время измеряется в днях). На отрезке в 365 дней случайным образом разбросали никак не связанные между собой 52 события

Как видите, о какой-либо периодичности в этих событиях речь не идет: когда пожелают, тогда и случатся. Но и в этом беспорядке статистика может нам показать определенные закономерности. Например, распределение длительности периодов между событиями, показанными на предыдущем рисунке, будет вовсе не равномерным (рис. 6.2).

Рис. 6.2. Плотность распределения длительностей промежутков между 52 событиями, случайно разбросанными по отрезку в 365 дней

Промежутки времени между соседними пуассоновскими событиями имеют экспоненциальное распределение с плотностью λe—λt (на рисунке для нашего случая показана сплошной линией). У этого распределения максимум (мода) находится в нуле, а среднее значение равно 1/λ, в нашем случае 7 дней. Более того, стандартное отклонение σ тоже равно 7 дням, поскольку дисперсия экспоненциального распределения σ2 = 1/λ2. Как видите, эти характеристики вовсе не гарантируют того, что между событиями будет проходить одна неделя. В среднем — да, но чаще всего меньше; к тому же могут наблюдаться и достаточно долгие промежутки без событий. Наконец, медиана показывает, что половина всех промежутков будет иметь длительность не более 5 дней. Интенсивность и частота — совсем не одно и то же; это очень важное замечание, к которому мы еще вернемся в этой главе.

Для справедливости положим, что хорошие и плохие события происходят равновероятно, но яркие и значимые (как хорошие, так и плохие) — существенно реже мелких и незначительных. Пусть это будет «обычная» жизнь, в которой эмоциональная окраска событий подчиняется нормальному (гауссовскому) распределению. Вот как может выглядеть год синтетической судьбы в виде череды случайных абсолютно независимых жизненных перипетий (рис. 6.3).

Рис. 6.3. Череда событий различной эмоциональной окраски, образующая пуассоновский поток с интенсивностью 2/7 (2 события в 7 дней)

Знак пиков отражает эмоциональную окраску, а их высота соответствует важности события или глубине переживаний, с ним связанных. Пока никаких полос не наблюдается, есть некий шум. Каждое событие проходит бесследно, ничего не оставляя ни в памяти, ни в настроении. Так не бывает, поэтому наделим нашего модельного героя памятью — для начала идеальной. Каждое событие пусть навсегда врежется в его память и отразится на настроении, либо улучшая, либо ухудшая его. Вот какую картинку мы можем получить, понаблюдав за судьбой нашего героя на протяжении десяти лет (рис. 6.4). Текущий «уровень счастья» вычисляется суммированием вкладов всех предшествующих событий. Позитивные события эту сумму увеличивают, а негативные — уменьшают.

Рис. 6.4. События, сливаясь в памяти, образуют эмоциональную окраску «синтетической жизни»

1 ... 29 30 31 32 33 34 35 36 37 ... 59
Перейти на страницу:
На этой странице вы можете бесплатно скачать Вероятности и неприятности. Математика повседневной жизни - Сергей Борисович Самойленко торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Вася
Вася 24.11.2024 - 19:04
Прекрасное описание анального секса
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит