Категории
Самые читаемые
RUSBOOK.SU » Научные и научно-популярные книги » Научпоп » Нобелевские премии. Ученые и открытия - Валерий Чолаков

Нобелевские премии. Ученые и открытия - Валерий Чолаков

Читать онлайн Нобелевские премии. Ученые и открытия - Валерий Чолаков

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 26 27 28 29 30 31 32 33 34 ... 88
Перейти на страницу:

По плану, намеченному руководителем лаборатории, сначала предполагалось применить уже известный метод наблюдения резонанса путем сильного нагрева излучающего вещества и вещества-приемника. Однако у аспиранта были свои идеи, и он, несмотря на риск провала диссертации и предупреждения со стороны руководителя, пошел по другому пути.

Рудольф Мёссбауэр начал с самого главного: если причиной исчезновения резонанса является отскок атомных ядер, то нельзя ли найти какой-то способ «фиксировать» ядра? Ответ был гениально прост. Это возможно, если атом связан, в кристаллической решетке твердого тела и если кристалл охлажден до температуры, близкой к абсолютному нулю. В этом случае отскок атомного ядра при поглощении им гамма-кванта передается миллионам атомов, превращаясь в энергию колебаний кристаллической решетки. Сам Мёссбауэр приводил пример со стрельбой из винтовки. При выстреле происходит отскок, но если винтовка упирается в стену, то отскок ничтожен, так как масса стены во много раз превосходит массу винтовки. Все это легко сформулировать теоретически, однако успешная реализация идеи Мёссбауэра была осуществлена лишь в 1958 г., когда его диссертация уже «висела на волоске». В своем эксперименте Мёссбауэр использовал кристалл иридия, охлажденный жидким воздухом. Тогда-то и был открыт «ядерный гамма-резонанс без отдачи ядра». Вместо этой длинной фразы теперь просто говорят «эффект Мёссбауэра».

Особенно ярко эффект наблюдается, когда источник гамма-излучения медленно движется к мишени. Эффект Мёссбауэра дал в руки ученым исключительно чувствительный экспериментальный метод исследования, который нашел широкое применение в различных областях науки и техники. С его помощью исследуются продолжительность жизни изотопов, магнитные поля атомов и другие свойства твердых тел. Он открывает возможность и для непосредственной проверки теории относительности.

Когда Рудольф Мёссбауэр сделал свое открытие, ему было всего 29 лет. Три года спустя, в 1961 г., он (наряду с Робертом Хофстедтером) стал лауреатом Нобелевской премии по физике — за исследования резонансного поглощения гамма-квантов и открытие эффекта, носящего его имя.

VII. МАГНИТНЫЕ ЯВЛЕНИЯ

В истории физики важное место занимают исследования магнетизма. Это известное с древнейших времен явление стало объектом научных экспериментов еще в XVII в. За два последних столетия явление магнетизма было изучено достаточно полно и всесторонне, в частности, была выявлена связь магнетизма и электричества. Полученные данные и легли в основу созданной Максвеллом в 1865 г. теории электромагнитного поля.

Новый этап в исследовании магнитных явлений наступил после того, как в 1880 г. нидерландский физик Хендрик Антон Лоренц создал электронную теорию. На основе этой теории он объяснил целый ряд физических явлений и предсказал новые. В частности, он предсказал явление расщепления спектральных линий в сильном магнитном поле. И когда в 1896 г. нидерландский физик Питер Зееман открыл такой эффект (названный в дальнейшем его именем), это означало огромный успех теории Лоренца. Лоренц разработал и теорию этого эффекта. В 1902 г. Лоренц и Зееман были удостоены Нобелевской премии по физике.

Дальнейшее развитие теории магнетизма связано с именем французского физика Поля Ланжевена. В 1905 г. он, основываясь на представлениях электронной теории, разработал термодинамическую и статистическую теорию диа- и парамагнетизма. Эти два понятия были введены еще в 1845 г. Майклом Фарадеем. Говоря кратко, диамагнетизм — это свойство вещества намагничиваться во внешнем магнитном поле в направлении, противоположном направлению поля, а парамагнетизм — свойство вещества намагничиваться в направлении поля. Теория Ланжевена связывала диамагнетизм с особенностями движения электронов по орбитам вокруг ядра, а парамагнетизм — с ориентацией собстственных магнитных моментов атомов и молекул. Впоследствии оказалось, что источником магнитного поля атома является не только движение электрона вокруг атомного ядра, но и спин электрона. В сущности, спин, который сначала связывали с вращением частицы вокруг собственной оси, был открыт при исследовании магнитных явлений, в частности эффекта Зеемана. Эксперименты указали и третий источник магнетизма — само ядро атома. Первые исследования магнетизма проводились с обладающими магнитными свойствами природными материалами. Еще с давних времен была известна железная руда под названием «магнитный железняк» (от которого, собственно, и происходит термин «магнетизм»), которая создает достаточно сильное магнитное поле. Вся совокупность этих свойств железа получила название «ферромагнетизм». Вначале считалось, что ферромагнетизм — просто одна из форм парамагнетизма. Позднее выяснилось, что механизм этих явлений различен. Среди первых попыток создать теорию ферромагнетизма особо следует отметить работы французского физика Пьера Эрнеста Вейса. В 1907 г. он высказал гипотезу о существовании в ферромагнетиках внутреннего магнитного поля и областей самопроизвольной намагниченности (участки Вейса). Магнитные моменты атомов в ферромагнетиках ориентированы параллельно, поэтому материал обнаруживает магнитные свойства и в отсутствие внешнего магнитного поля.

У французских физиков существуют богатые традиции исследований в области магнетизма. Одним из носителей этих традиций является Луи Эжен Феликс Неель. Как Пьер Вейс и Поль Ланжевен, он также избран членом Парижской академии наук. В 1930 г., работая в Страсбургском университете, Неель открыл явление антиферромагнетизма. Если в ферромагнетиках магнитные моменты атомов ориентированы в одном направлении, то в антиферромагнетиках они ориентированы навстречу друг другу (антипараллельно) и взаимно компенсируют друг друга, поэтому в отсутствие магнитного поля намагниченность тела в целом равна нулю.

В 1948 г. Неель, будучи уже профессором Гренобльского университета, занялся ферритами — одним из видов химических соединений окислов переходных металлов с окисью железа, обладающих специфической структурой и магнитными свойствами. Французский ученый дал объяснение сильному магнетизму ферритов, показав, что в их кристаллах атомные магнитные моменты ориентированы, как у. антиферромагнетиков, но по величине противоположно направленные магнитные моменты различны, и поэтому не происходит их взаимной компенсации.

Исходя из своей теории, Неель описал поведение новых синтетических магнитных материалов. За фундаментальные работы по магнетизму Луи Неель был удостоен в 1970 г. звания лауреата Нобелевской премии по физике, разделив эту награду с Ханнесом Альфвеном.

Одним из создателей современных представлений о магнетизме вещества является американский физик Джон Хансбрук Ван Флек. В период 1926—1928 гг., работая в Миннесотском университете, он разработал квантовомеханическую теорию диа- и парамагнетизма. Первоначально теория касалась только газов и неметаллических соединений, но впоследствии была распространена и на кристаллы. В 1932 г. Ван Флек опубликовал обширную монографию, посвященную проблемам магнетизма, которая приобрела широкую известность в научных кругах. В 30-е годы эта и другие работы Ван Флека сыграли большую роль в развитии квантовой теории химических связей. Пройдя долгий плодотворный путь и сохранив работоспособность до преклонного возраста, этот ученый стал лауреатом Нобелевской премии по физике лишь в 1977 г. — в возрасте 88 лет. Ван Флек получил это высокое признание за исследования магнетизма вещества, в частности за работы в области упорядоченных магнитных систем, каковыми являются кристаллы.

Вместе с Ван Флеком Нобелевской премии были удостоены Филип Андерсон, его ученик из Гарвардского университета, и английский физик Невилл Мотт. Андерсон известен своими работами по магнетизму и сверхпроводимости, а Мотт — множеством исследований в различных областях физики твердого тела, которые он проводил на протяжении почти четырех десятилетий. Однако эти два ученых, по существу, были награждены за исследования локализации электронных состояний в неупорядоченных системах, к которым относятся жидкие, аморфные и стекловидные вещества.

В современной науке неупорядоченные системы — одно из особенно бурно развивающихся и перспективных направлений исследования. С аморфными полупроводниками, например, связываются надежды на дальнейшее развитие микроэлектроники. Признанием заслуг в этой области исследований и явилось присуждение в 1977 г. Нобелевской премии Филипу Андерсону и Невиллу Мотту.

Важное место в исследовании магнетизма занимают эксперименты, связанные с измерением магнитных моментов атомов и элементарных частиц. В 1922 г. Отто Штерн и Вальтер Герлах из Франкфуртского университета поставили опыт, доказывающий наличие у атома магнитного момента. Они пропускали поток атомов серебра между полюсами магнита в вакуумной камере. Как и ожидалось, поток разделился на два и на экране образовались два серебряных пятнышка. Это подтвердило, что атомы можно рассматривать как миниатюрные магнитики с магнитной осью, с северным и южным магнитными полюсами, которые соответствующим образом ориентируются в пространстве относительно внешнего магнитного поля.

1 ... 26 27 28 29 30 31 32 33 34 ... 88
Перейти на страницу:
На этой странице вы можете бесплатно скачать Нобелевские премии. Ученые и открытия - Валерий Чолаков торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит