Категории
Самые читаемые
RUSBOOK.SU » Научные и научно-популярные книги » Физика » "Физический минимум" на начало XXI века - Виталий Гинзбург

"Физический минимум" на начало XXI века - Виталий Гинзбург

Читать онлайн "Физический минимум" на начало XXI века - Виталий Гинзбург

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5
Перейти на страницу:

В квантовой механике и в квантовой теории поля элементарные частицы считаются точечными. В теории струн элементарные частицы — это колебания одномерных объектов (струн), имеющих характерные размеры порядка 10–33 см. Струны могут быть конечной длины (некоторый «отрезок») или в виде колечек. Струны рассматриваются не в 4-мерном («обычном») пространстве, а в многомерных пространствах, скажем с 10 или 11 измерениями.

Теоретическая физика еще не может ответить на целый ряд вопросов, например: как построить квантовую теорию гравитации и объединить ее с теорией других взаимодействий; почему существует, по-видимому, только 6 типов (ароматов) кварков и 6 лептонов; почему масса электронного нейтрино очень мала; почему m- и t-лептоны отличаются по своей массе от электрона именно в известное из эксперимента число раз; как определить из теории постоянную тонкой структуры a = 1/137 и ряд других постоянных и т. д. Другими словами, как ни грандиозны и впечатляющи достижения физики, нерешенных фундаментальных проблем предостаточно. Теория струн еще не ответила на подобные вопросы. Все, что в ней происходит, — это, скорее, «физнадежды», как любил говорить Л. Д. Ландау, а не результаты. Но чувствуется, что эта теория — нечто глубокое и развивающееся.

Астрофизика

К астрофизике относим проблемы 21–30, что в некоторых случаях весьма условно. В частности, и даже в особенности, это относится к вопросу об экспериментальной проверке ОТО — общей теории относительности. Эффекты ОТО в пределах Солнечной системы весьма малы. Именно поэтому проверка, с успехом начатая в 1919 году и продолжающая до сих пор, не приводит к точностям, к которым мы привыкли в атомной физике.

Для отклонения радиоволн Солнцем отношение наблюдаемой величины к вычисленной согласно ОТО составляет 0,99997 + 0,00016. Такое же отношение для поворота перигелия Меркурия равно 1,000 + 0,001. В общем ОТО проверена в слабом гравитационном поле с погрешностью до сотой доли процента; при этом никаких отклонений от ОТО не обнаружено. Особо стоит вопрос о проверке принципа эквивалентности; его справедливость подтверждена с точностью 10–12.

В астрофизике отклонение лучей в поле тяжести все шире используется при наблюдении «линзирования», т. е. фокусировки электромагнитных волн под действием гравитационного поля, в применении как к галактикам (они линзируют свет и радиоволны квазаров и других галактик), так и к звездам (микролинзирование более удаленных звезд). Разумеется, речь при этом не идет о проверке ОТО (точность измерений сравнительно невелика), а об ее использовании.

Когда-то наблюдать гравитационные линзы считалось практически невозможным. Однако в 1979 году было обнаружено линзирование одного из квазаров. В настоящее время наблюдение линзирования и микролинзирования — довольно широко используемый астрономический метод. В частности, данные о линзировании позволяют определить постоянную Хаббла.

По-настоящему актуальна проверка ОТО в сильных гравитационных полях — для нейтронных звезд и вблизи черных дыр и вообще для черных дыр. Так, недавно предложен метод проверки ОТО в сильном поле по колебаниям излучения в двойной звезде, одна из компонент которой является нейтронной звездой. Хотя черные дыры и можно было вообразить себе в дорелятивистской физике, но по сути дела — это замечательный релятивистский объект. Можно отметить, что их обнаружение подтверждает ОТО. Однако, насколько я себе представляю ситуацию, нельзя утверждать, что известное о черных дырах подтверждает именно ОТО, а не некоторые отличающиеся от нее релятивистские теории гравитации.

Существенной проверкой ОТО является исследование двойных пульсаров. Оно показало, что потеря энергии двумя движущимися нейтронными звездами, образующими двойную систему, находится в полном согласии с ОТО при учете гравитационного излучения (интенсивность которого была вычислена Эйнштейном в 1918 году). Ни один квалифицированный физик не сомневается в существовании гравитационных волн. Но имеется проблема (она фигурирует в списке под номером 22) — прием гравитационных волн, приходящих из космоса. Задача технически очень сложна, для ее решения строятся гигантские установки. Так, система LIGO (Laser interferometer gravitational-wave observatory, США) состоит из двух далеко разнесенных «антенн» длиной 4 км каждая. В этой установке можно будет заметить происходящее под действием приходящей гравитационной волны смещение зеркал на 10–16 см, а в дальнейшем и меньшие смещения. В ближайшие годы LIGO и аналогичные установки, строящиеся в Европе и Японии, вступят в строй. Так будет положено начало гравитационно-волновой астрономии.

Замечу, что радиоастрономия родилась в 1931 году, а начала интенсивно развиваться после 1945 года. Галактическая рентгеновская астрономия возникла в 1962 году. Гамма-астрономия и нейтринная астрономия еще моложе. С развитием гравитационно-волновой астрономии будет освоен последний известный «канал», по которому мы можем получать астрофизическую информацию. Как и в других случаях, весьма важны будут совместные (одновременные) измерения в различных «каналах». Речь может идти, например, об исследовании образования сверхмассивных черных дыр совместно в нейтринном, гравитационно-волновом и гамма-«каналах».

Совокупность проблем, указанных в списке под номером 23, — это, пожалуй, самое главное в астрофизике. Сюда отнесена и космология. Несомненно, космологическая проблема — великая проблема. Внимание она привлекала к себе всегда: ведь системы Птолемея и Коперника — это тоже космологические теории. В рамках физики XX века космология в теоретическом плане создавалась в работах Эйнштейна (1917 г.), Фридмана (1922 и 1924 гг.), Леметра (1927 г.) и затем многих других. Но до конца 40-х годов все наблюдения, существенные с космологической точки зрения, велись в оптическом диапазоне. Поэтому от крыт был лишь закон красного смещения, и тем самым установлено расширение Метагалактики (работы Хаббла, которые датируются 1929 годом, хотя красное смещение наблюдалось и ранее, и не только Хабблом). Энергичное развитие космологии началось только после того, как в 1965 году было открыто реликтовое тепловое радиоизлучение с температурой около 2,7 К. В настоящее время именно измерения в радиодиапазоне играют наиболее важную роль среди наблюдений, имеющих космологическое значение.

Одной из основных, а может быть и главной, задачей в космологии является определение характера эволюции Вселенной. Важный результат, известный уже довольно давно, заключается в том, что в эволюцию Вселенной вносит вклад не только «обычное» барионное вещество (и, конечно, электроны), но еще что-то, что называют скрытой, или темной, массой (dark matter). Кроме этого, предполагается и влияние некоторой «вакуумной материи», называемой также «темной энергией».

Обращаясь к проблеме 24 (нейтронные звезды и пульсары, сверхновые), замечу, что гипотеза о существовании нейтронных звезд, насколько знаю, была высказана в 1934 году. Вначале казалось, что нейтронные звезды (характерный радиус 10 км, масса порядка массы Солнца) обнаружить почти невозможно. Сейчас даже одиночные нейтронные звезды, не говоря уже о двойных звездах, изучаются в рентгеновских лучах. Однако еще до этого в 1967–1968 годах было открыто радиоизлучение нейтронных звезд — пульсаров.

Сейчас известно около 1000 пульсаров с периодом радиоимпульсов (это также период вращения звезды) от 1,56 x 10 –3 с до 4,3 с. У миллисекундных пульсаров магнитное поле (на поверхности) порядка 10 8– 10 9 Э. У большинства пульсаров с периодом радиоимпульсов от 0,1 с до 1 с поле порядка 10 12 Э. Кстати, существование в природе столь сильных магнитных полей тоже важное открытие. В последнее время обнаружены нейтронные звезды с еще более сильными полями (магнетары), достигающими по оценкам 10 15–10 16 Э(!). Радиоизлучение эти магнетары не испускают, но наблюдаются в мягких гамма-лучах.

Черные дыры и особенно космические струны — еще значительно более экзотические объекты, чем нейтронные звезды. Космические струны (не следует, конечно, их путать с суперструнами) — это некоторые (не единственно возможные) топологические «дефекты», могущие возникать при фазовых переходах в ранней Вселенной. Они представляют собой нити, могущие быть замкнутыми (кольца) космических масштабов и с характерной толщиной порядка 10–29– 10–30 см. Космические струны еще не наблюдались, даже «кандидаты» на эту роль мне неизвестны. Поэтому я было включил космические струны в «список» рядом с черными дырами, но поставил знак вопроса.

Совсем иначе дело обстоит с черными дырами — они являются важнейшими астрономическими и физическими объектами. Несмотря на то что «схватить черную дыру за руку» очень трудно, в их существовании и большой роли в космосе сегодня невозможно сомневаться. Любопытно, что черные дыры в некотором смысле были предсказаны еще в конце XVIII века Митчеллом и Лапласом.

1 2 3 4 5
Перейти на страницу:
На этой странице вы можете бесплатно скачать "Физический минимум" на начало XXI века - Виталий Гинзбург торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Вася
Вася 24.11.2024 - 19:04
Прекрасное описание анального секса
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит