Архитектура операционной системы UNIX - Морис Бах
Шрифт:
Интервал:
Закладка:
алгоритм read
входная информация:
пользовательский дескриптор файла
адрес буфера в пользовательском процессе
количество байт, которые нужно прочитать
выходная информация: количество байт, скопированных в пользовательское пространство
{
обратиться к записи в таблице файлов по значению пользовательского дескриптора файла;
проверить доступность файла;
установить параметры в адресном пространстве процесса, указав адрес пользователя, счетчик байтов, параметры ввода-вывода для пользователя;
получить индекс по записи в таблице файлов;
заблокировать индекс;
установить значение смещения в байтах для адресного пространства процесса по значению смещения в таблице файлов;
do (пока значение счетчика байтов не станет удовлетворительным) {
превратить смещение в файле в номер дискового блока (алгоритм bmap);
вычислить смещение внутри блока и количество байт, которые будут прочитаны;
if (количество байт для чтения == 0) /* попытка чтения конца файла */ break; /* выход из цикла */
прочитать блок (алгоритм breada, если производится чтение с продвижением, и алгоритм bread — в противном случае);
скопировать данные из системного буфера по адресу пользователя;
скорректировать значения полей в адресном пространстве процесса, указывающие смещение в байтах внутри файла, количество прочитанных байт и адрес для передачи в пространство пользователя;
освободить буфер; /* заблокированный в алгоритме bread */
}
разблокировать индекс;
скорректировать значение смещения в таблице файлов для следующей операции чтения;
return (общее число прочитанных байт);
}
Рисунок 5.5. Алгоритм чтения из файла
mode чтение или запись
count количество байт для чтения или записи
offset смещение в байтах внутри файла
address адрес места, куда будут копироваться данные, в памяти пользователя или ядра
flag отношение адреса к памяти пользователя или к памяти ядра
Рисунок 5.6. Параметры ввода-вывода, хранящиеся в пространстве процесса
Затем в алгоритме начинается цикл, выполняющийся до тех пор, пока операция чтения не будет произведена до конца. Ядро преобразует смещение в байтах внутри файла в номер блока, используя алгоритм bmap, и вычисляет смещение внутри блока до места, откуда следует начать ввод-вывод, а также количество байт, которые будут прочитаны из блока. После считывания блока в буфер, возможно, с продвижением (алгоритмы bread и breada) ядро копирует данные из блока по назначенному адресу в пользовательском процессе. Оно корректирует параметры ввода-вывода в адресном пространстве процесса в соответствии с количеством прочитанных байт, увеличивая значение смещения в байтах внутри файла и адрес места в пользовательском процессе, куда будет доставлена следующая порция данных, и уменьшая число байт, которые необходимо прочитать, чтобы выполнить запрос пользователя. Если запрос пользователя не удовлетворен, ядро повторяет весь цикл, преобразуя смещение в байтах внутри файла в номер блока, считывая блок с диска в системный буфер, копируя данные из буфера в пользовательский процесс, освобождая буфер и корректируя значения параметров ввода-вывода в адресном пространстве процесса. Цикл завершается, либо когда ядро выполнит запрос пользователя полностью, либо когда в файле больше не будет данных, либо если ядро обнаружит ошибку при чтении данных с диска или при копировании данных в пространство пользователя. Ядро корректирует значение смещения в таблице файлов в соответствии с количеством фактически прочитанных байт; поэтому успешное выполнение операций чтения выглядит как последовательное считывание данных из файла. Системная операция lseek (раздел 5.6) устанавливает значение смещения в таблице файлов и изменяет порядок, в котором процесс читает или записывает данные в файле.
#include ‹fcntl.h›
main() {
int fd;
char lilbuf[20], bigbuf[1024];
fd = open("/etc/passwd", O_RDONLY);
read(fd, lilbuf, 20);
read(fd, bigbuf, 1024);
read(fd, lilbuf, 20);
}
Рисунок 5.7. Пример программы чтения из файла
Рассмотрим программу, приведенную на Рисунке 5.7. Функция open возвращает дескриптор файла, который пользователь засылает в переменную fd и использует в последующих вызовах функции read. Выполняя функцию read, ядро проверяет, правильно ли задан параметр «дескриптор файла», а также был ли файл предварительно открыт процессом для чтения. Оно сохраняет значение адреса пользовательского буфера, количество считываемых байт и начальное смещение в байтах внутри файла (соответственно: lilbuf, 20 и 0), в пространстве процесса. В результате вычислений оказывается, что нулевое значение смещения соответствует нулевому блоку файла, и ядро возвращает точку входа в индекс, соответствующую нулевому блоку. Предполагая, что такой блок существует, ядро считывает полный блок размером 1024 байта в буфер, но по адресу lilbuf копирует только 20 байт. Оно увеличивает смещение внутри пространства процесса на 20 байт и сбрасывает счетчик данных в 0. Поскольку операция read выполнилась, ядро переустанавливает значение смещения в таблице файлов на 20, так что последующие операции чтения из файла с данным дескриптором начнутся с места, расположенного со смещением 20 байт от начала файла, а системная функция возвращает число байт, фактически прочитанных, т. е. 20.
При повторном вызове функции read ядро вновь проверяет корректность указания дескриптора и наличие соответствующего файла, открытого процессом для чтения, поскольку оно никак не может узнать, что запрос пользователя на чтение касается того же самого файла, существование которого было установлено во время последнего вызова функции. Ядро сохраняет в пространстве процесса пользовательский адрес bigbuf, количество байт, которые нужно прочитать процессу (1024), и начальное смещение в файле (20), взятое из таблицы файлов. Ядро преобразует смещение внутри файла в номер дискового блока, как раньше, и считывает блок. Если между вызовами функции read прошло непродолжительное время, есть шансы, что блок находится в буферном кеше. Однако, ядро не может полностью удовлетворить запрос пользователя на чтение за счет содержимого буфера, поскольку только 1004 байта из 1024 для данного запроса находятся в буфере. Поэтому оно копирует оставшиеся 1004 байта из буфера в пользовательскую структуру данных bigbuf и корректирует параметры в пространстве процесса таким образом, чтобы следующий шаг цикла чтения начинался в файле с байта 1024, при этом данные следует копировать по адресу байта 1004 в bigbuf в объеме 20 байт, чтобы удовлетворить запрос на чтение.
Теперь ядро переходит к началу цикла, содержащегося в алгоритме read. Оно преобразует смещение в байтах (1024) в номер логического блока (1), обращается ко второму блоку прямой адресации, номер которого хранится в индексе, и отыскивает точный дисковый блок, из которого будет производиться чтение. Ядро считывает блок из буферного кеша или с диска, если в кеше данный блок отсутствует. Наконец, оно копирует 20 байт из буфера по уточненному адресу в пользовательский процесс. Прежде чем выйти из системной функции, ядро устанавливает значение поля смещения в таблице файлов равным 1044, то есть равным значению смещения в байтах до места, куда будет производиться следующее обращение. В последнем вызове функции read из примера ядро ведет себя, как и в первом обращении к функции, за исключением того, что чтение из файла в данном случае начинается с байта 1044, так как именно это значение будет обнаружено в поле смещения той записи таблицы файлов, которая соответствует указанному дескриптору.
Пример показывает, насколько выгодно для запросов ввода-вывода работать с данными, начинающимися на границах блоков файловой системы и имеющими размер, кратный размеру блока. Это позволяет ядру избегать дополнительных итераций при выполнении цикла в алгоритме read и всех вытекающих последствий, связанных с дополнительными обращениями к индексу в поисках номера блока, который содержит данные, и с конкуренцией за использование буферного пула. Библиотека стандартных модулей ввода-вывода создана таким образом, чтобы скрыть от пользователей размеры буферов ядра; ее использование позволяет избежать потерь производительности, присущих процессам, работающим с небольшими порциями данных, из-за чего их функционирование на уровне файловой системы неэффективно (см. упражнение 5.4).