Категории
Самые читаемые
RUSBOOK.SU » Научные и научно-популярные книги » Прочая научная литература » История земли и жизни на ней - Кирилл Еськов

История земли и жизни на ней - Кирилл Еськов

Читать онлайн История земли и жизни на ней - Кирилл Еськов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 23 24 25 26 27 28 29 30 31 ... 68
Перейти на страницу:

Самое же интересное заключается в том, что составляющие эту современную биоту таксоны (а их состав на уровне типов с той поры уже принципиально не менялся!) одновременно обзаводятся минеральным скелетом, причем процесс этот охватывает самые различные группы не только животных, но и водорослей. Вот что пишет, например, один из ведущих специалистов по этому отрезку геологической истории А.Ю. Розанов: «Начнем с того, что поражает любого исследователя, когда он изучает разрезы пограничных отложений докембрия и кембрия. Двигаясь вверх по разрезу от докембрийских пород к кембрийским, мы вдруг обнаруживаем в какой-то момент, что порода насыщена многочисленными и разнообразными остатками организмов, облик которых уже более или менее привычен для нас. Здесь начинают встречаться обычные для всего фанерозоя остатки губок, моллюсков, брахиопод и других организмов. Непривычны только их размеры (первые миллиметры).»

Пытаясь разобраться в причинах этого события, называемого обычно «кембрийской скелетной революцией», надо иметь в виду следующее. Обзавестись твердым скелетом — дело, конечно, «прибыльное», но весьма «капиталоемкое», требующее от организмов больших «первоначальных вложений» по энергии и веществу. Поэтому строить скелет способны лишь существа с достаточно высоким уровнем энергетического обмена, каковой возможен лишь начиная с некоторого уровня содержания на планете свободного кислорода (о «гипотезе кислородного контроля» — см. главу 5). Проанализируем теперь под этим углом зрения докембрийскую экологическую ситуацию.

Начать тут придется издалека. Одной из самых важных задач современной океанологии является детальное изучение морских течений; это, помимо прочего, весьма важно для практики судовождения. С этой целью в воды Мирового океана ежегодно бросают, точно зафиксировав место и время, многие тысячи специальных буев; выловив впоследствии такой буй в другой точке океана, мы получаем представление о направлении и скорости движения переносивших его водных масс. Исследования эти стоят больших денег, а поскольку подавляющее большинство буев при этом безвозвратно теряется, эффективность метода не слишком высока. В связи с этим встал вопрос: а нельзя ли вместо буев найти какой-нибудь естественную «метку» для океанских водных масс?

Такая «метка» действительно существует: это просто-напросто… пыль, которая всегда содержится в атмосфере и, понятное дело, постоянно оседает не только на крышку вашей парты, но и на поверхность океана. Химический состав этой атмосферной пыли в каждой точке Земли свой — на него влияет геохимия соответствующей территории, тип вулканической активности и т. д. А поскольку возможности аналитической химии по нынешнему времени почти безграничны (криминалисты, например, с легкостью определяют, в каком из месторождений мира было добыто контрабандное золото), то для реконструкции картины течений кажется достаточным просто зачерпнуть толику морской воды и установить, в каких именно местах Земли выпадала содержащаяся в воде пыль. Океанологи с энтузиазмом принялись за работу, и спустя небольшое время с изумлением обнаружили, что атмосферной пыли (равно как и вообще взвеси) в океанской воде практически не содержится; на подоконнике, к примеру, пыль будет скапливаться до тех пор, пока ее не сотрет дежурный по классу, а вот из океана она странным образом куда-то улетучивается. Быстро осесть на дно пылинка не может — это можно доказать простыми физическими расчетами. В чем же дело?

К тому времени было уже хорошо известно, какую титаническую работу осуществляют в морях животные-фильтраторы, и прежде всего двустворчатые моллюски; согласно расчетам, одни только уже закартированные устричные банки прогоняют сквозь себя объем воды, равный всему Мировому океану, примерно за месяц! Однако двустворки очищают именно придонные слои воды, куда, как мы помним, пылинкам попасть довольно сложно… Вот тогда-то и выяснилось, что планктонные фильтраторы, и прежде всего — ракообразные, играют в очищении океана роль ничуть не меньшую, чем бентосные. Отсутствие в водах океана сколь-нибудь ощутимых количеств пыли, которая постоянно оседает на его поверхность, является результатом деятельности планктонных ракообразных: они очень быстро отфильтровывают взвесь, упаковывают ее в формируемые их пищеварительным трактом компактные комки отработанной органики — фекальные пеллеты, и отправляют на дно. Без пеллетной транспортировки взвеси мутность воды в океанах была бы несравненно выше.

Именно такая ситуация и должна была наблюдаться в далеком прошлом. Как мы с вами помним, отсутствие в докембрии наземной растительности приводило к многократному усилению эрозии и формированию специфических выположенных ландшафтов — «не суша, не море» (глава 5). Сток с континентов был в основном «плащевым» (т. е. по всей протяженности береговой линии), а равнинные реки и озера, являющиеся ныне главными отстойниками взвеси, отсутствовали. Воды, стекавшие с суши, были мутными, причем самой замутненной в итоге оказывалась именно прибрежная часть океана, наиболее богатая биогенами. Это чрезвычайно затрудняло утилизацию биогенов фитопланктоном из-за узости фотической зоны и резко ограничивало общую продуктивность планктонной экосистемы.

С другой стороны, иной оказывалась и организация самой водной массы. В современных океанах имеется верхний слой воды с резко выраженными сезонными колебаниями температуры — эпиталасса, и нижний, где температура на протяжении всего года практически неизменна — гипоталасса (в озерах им соответствуют эпи— и гиполимнион). На границе между этими слоями располагается узкая зона резкого изменения температуры — термоклин; в современных морях он находится на глубинах от 15 до 100 м. В условиях же замутненной воды энергия солнца практически не проникает глубже первых метров, и термоклин оказывается «подтянутым» под самую поверхность; водная масса оказывается жестко стратифицированой — т. е. разделенную на почти неперемешивающиеся между собою слои: узкую перегретую эпиталассу и относительно холодную, но при этом практически лишенную кислорода гипоталассу. Для этого времени были обычны донные осадки, резко обогащенные неокисленной органикой («черные сланцы»), которые считают несомненным показателем придонной аноксии (бескислородных условий); позже (начиная с кембрия) их распространение резко сократится. Ситуация аноксии («заморные обстановки») сильно затрудняла, или даже вообще исключала, существование донной фауны.

И вот на границе венда и кембрия произошло событие, важность которого палеонтологи осознали лишь в самое последнее время (впервые эту идею высказал в 1985 г. А.Г.Пономаренко, а теперь она подтверждена геохимическими данными): в составе докембрийского зоопланктона (бесскелетного, и потому не имевшего шансов захорониться — см. главу 6) возникли достаточно эффективные фильтраторы, формировавшие фекальные пеллеты. Единичные фекальные пеллеты были известны и раньше (еще в протерозое), однако именно начало кембрия — это время массового их распространения в морских отложениях.

Следствием этого, вроде бы малозначительного, события стал целый каскад экосистемных перестроек. Уменьшение мутности воды привело к резкому расширению фотической зоны и росту продуктивности экосистем. Расширение же эпиталассы привело к разрушению жесткой температурной стратификации и некоторому обогащению кислородом нижележащих водных слоев. Мало того; мы с вами помним (из главы 6), что именно дисперсная органика, опускающаяся из фотической зоны, является причиной аноксии в придонных слоях — ибо на ее окисление там расходуется кислород; многие исследователи даже употребляют термин «эвтрофный океан». Теперь же органика эта стала, вместе с неорганическими частичками, поступать на морское дно в концентрированном, «упакованном» виде — в пеллетах. Органический детрит, обогащающий донные осадки, — это уже не удушающий эвтрофикатор, а ценный пищевой ресурс; содержание же кислорода в придонных слоях в результате возрастает до уровня, допускающего существование макроскопической донной фауны. Начиная с этого момента в системе возникает положительная обратная связь: придонная фауна в свою очередь начинает очищать воду от органической и минеральной взвеси, количество кислорода в итоге опять возрастает, это позволяет еще дальше наращивать разнообразие живых организмов, и т. д.

Количество свободного кислорода на планете тем временем тоже увеличивается. Во второй половине венда в уже знакомых нам амфибиотических ландшафтах («ни суша, ни море») место цианобактериальных матов, с их потрясающим по совершенству балансом в производстве и потреблении органики, занимают сообщества водорослей (главным образом — нитчатых), которые иногда называют «водорослевыми болотами». В этих болотах, чрезвычайно широко распространенных во внетропической зоне, захоранивается огромное количество неокисленной органики, а именно такая ситуация (как мы помним из главы 5) вызывает накопление свободного кислорода. По-видимому, сыграло свою роль и крупное Бойканурское оледенение, маркирующее границу венда и кембрия: мы уже помним (см. главу 6), что наличие льдов и психросферы облегчает «закачку» кислорода в глубокие слои океана, вентиляция же дна благоприятствует развитию бентоса.

1 ... 23 24 25 26 27 28 29 30 31 ... 68
Перейти на страницу:
На этой странице вы можете бесплатно скачать История земли и жизни на ней - Кирилл Еськов торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит