Новая Физика Веры - Виталий Тихоплав
Шрифт:
Интервал:
Закладка:
Позднее Бом написал:
Этот опыт поразил меня тем, что в точности соответствовал моим представлениям о порядке, то есть когда чернильное пятно расползалось, оно все-таки имело «скрытый» (то есть непроявленный) порядок, который проявлялся, как только капля восстанавливалась. С другой стороны, на нашем обычном языке мы сказали бы, что чернила были в состоянии «беспорядка», растворившись в глицерине. Этот опыт привел меня к новому определению порядка (5).
Это открытие сильно воодушевило Бома. Наконец он нашел метафору для понимания порядка, которая позволила не только свести воедино все его разрозненные мысли за многие годы, но и предоставила мощный аналитический аппарат в его распоряжение. Этой метафорой была голограмма.
Бом стал приверженцем голографической теории Вселенной после разочарования в общепринятых теориях, не способных дать удовлетворительное объяснение явлениям квантовой физики.
Голограмма и ее свойстваГолография – способ записи и восстановления волнового поля, основанный на регистрации интерференционной картины, которая образована двумя волнами: волной, отраженной предметом, освещаемым источником света (предметная волна), и когерентной с ней волной, идущей непосредственно от источника (опорная волна). Зарегистрированная интерференционная картина называется голограммой (4).
Основы голографии были заложены физиком Денисом Габором (впоследствии Нобелевским лауреатом) в 1948 году. Когда Габор впервые пришел к идее голографии, он не думал о лазерах. Его целью было улучшить электронный микроскоп, на то время довольно простое и несовершенное устройство. Габор предложил регистрировать информацию не только об амплитудах, но и о фазах электронных волн путем наложения на предметную волну попутной когерентной (синхронной) опорной волны. Он использовал исключительно математический подход, основанный на исчислении, изобретенном в XVIII веке французским математиком Жаном Фурье.
Математическое обеспечение голограммы. Ж. Фурье разработал математический метод перевода паттерна любой сложности на язык простых волн и показал, как эти волновые формы можно преобразовать в первоначальный паттерн. Чтобы понять суть такого преобразования, вспомним, что телевизионная камера, например, переводит визуальный образ в набор электромагнитных волн различной частоты. А телевизор с помощью антенны воспринимает этот пакет волн и переводит их в визуальный образ. Подобно процессам в телекамере и телевизоре, математический аппарат, разработанный Фурье, преобразует паттерны. Уравнения, используемые для перевода образов в волновые формы и обратно, известны как преобразования Фурье. Именно они позволили Габору перевести изображение объекта в интерференционное «пятно» на голографической пленке, а также изобрести способ обратного преобразования интерференционных паттернов в первоначальное изображение.
Однако отсутствие мощных источников когерентного света не позволило Габору получить качественное голографическое изображение.
Второе рождение голография пережила в 1962–1963 годах, когда американские физики Э. Лейт и Ю. Упаниекс применили в качестве источника лазер и разработали схему с наклонным опорным пучком (4).
Познакомимся немного ближе с тем, что такое голограмма. В основе голограммы лежит интерференция, то есть паттерн, возникающий в результате наложения двух или более волн. Если, например, бросить в пруд камешек, это произведет серию концентрических, расходящихся волн. Если же бросить два камешка, мы увидим, соответственно, два ряда волн, которые, расходясь, налагаются друг на друга. Возникающая при этом сложная конфигурация из пересекающихся вершин и впадин известна как интерференционная картина.
Такую картину может создавать любое волновое явление, включая свет и радиоволны. Особенно эффективен в данном случае лазерный луч, поскольку он является исключительно чистым, когерентным источником света. Лазерный луч создает, так сказать, идеальный камешек и идеальный пруд. Поэтому лишь с изобретением лазера открылась возможность получать искусственные голограммы.
От лазерного источника направляют два луча света: на объект и на зеркало. Отраженные от объекта (предметная) и от зеркала (опорная) волны направляют на фотопластину со светочувствительной поверхностью, где и происходит их наложение друг на друга. Образовавшаяся сложная интерференционная картина, содержащая информацию об объекте, представляет собой голографическую фотографию, которая внешне не имеет никакого сходства с фотографируемым предметом. Она может представлять собой систему чередующихся между собой светлых или темных колец, прямолинейных или волнистых полос, а также иметь пятнистый рисунок (9).
Свойства голограммы. Если голограмму осветить опорной волной от источника, то в результате дифракции света на интерференционной структуре голограммы в дифракционном пучке восстанавливается копия предметной волны, и в некотором удалении появляется мнимое объемное (волновое) изображение объекта, которое трудно отличить от оригинала (4). Трехмерность изображения таких объектов удивительно реальна. Можно обойти голографическую картинку и увидеть ее под разными углами, как будто это реальный объект. Однако при попытке потрогать голограмму рука просто пройдет через воздух и вы ничего не обнаружите, как, например, не обнаруживаете рукой радиоволны в пространстве.
Трехмерность не единственное замечательное свойство голограммы. Если от голографической фотопленки отрезать половину, а затем осветить ее лазером, изображение, появившееся невдалеке, все равно окажется целым. Даже если останется только маленький кусочек голографической фотопленки, то и от него при соответствующем освещении появится полное изображение объекта. Правда, чем меньше кусочек, тем хуже качество изображения. В отличие от обычных фотографий, каждая небольшая частичка голографической пленки содержит всю информацию целого.
Кроме объемного изображения, голограмма обладает еще одним уникальным свойством: на одной фотопластине можно последовательно записать несколько изображений только за счет изменения угла, под которым два лазера облучают эту пластину. И любое записанное таким образом изображение можно восстановить простым освещением этой пластины лазером, направленным под тем же углом, под которым находились первоначально два луча. Исследователи рассчитали, что, используя этот метод, на одном квадратном сантиметре пленки можно разместить столько же информации, сколько содержится в десяти Библиях!
Таким образом, голограммы обладают фантастической способностью к хранению информации. Голографическое кодирование информации потрясает поразительной эффективностью. С количеством информации, которую можно зафиксировать голограммой, нельзя сопоставить ни одно из существующих средств хранения информации. Эффективность информационного кодирования с помощью голограммы столь велика, что может быть сравнима с эффективностью хранения информации в памяти человека (10).
Если две когерентные волны накладываются друг на друга в пространстве (а не на фотопластине), образуется так называемая информационная матрица, или интерферограмма, содержащая в себе информацию в закодированном виде.
Скрытый порядок и раскрытая реальностьКак только Бом начал внимательно изучать голограмму, он увидел, что она представляет собой новый способ объяснения порядка. Интерференционные картины, записанные на кусочке голографической пленки, кажутся хаотичными для невооруженного глаза, подобно чернильной капле, расползшейся в глицерине, которая, однако, имеет скрытый (имплицитный) порядок. По мнению Бома, пленка также содержит скрытый порядок, ибо изображение, закодированное в интерференционных картинах, есть скрытая полнота, свернутая в пространстве. А голограмма, проецируемая пленкой, имеет раскрытый порядок, поскольку представляет развернутую и видимую версию изображения. Оба явления обладают скрытым, или свернутым, порядком, напоминающим порядок плазмы, состоящей из кажущегося случайным индивидуального поведения электронов. Поскольку каждая часть голографической пленки содержит всю полноту информации, то, следовательно, эта информация распределена нелокально. И это не было единственной блестящей догадкой, полученной с помощью голограммы.
Чем больше Бом думал об этом феномене, тем более он убеждался в том, что Вселенная фактически использует голографический принцип в своей работе. Она пронизана бесчисленным количеством разнообразных волн различных уровней вибраций – от низкочастотных электромагнитных до высокочастотных торсионных. Каждая волна одного рода образует с когерентной ей волной того же рода интерферограмму. Таким образом, Вселенная – это огромная плавающая голограмма, в любой точке которой содержится информация обо всем Мире, но она закодирована в голографических интерференционных микроструктурах (5).