Категории
Самые читаемые
RUSBOOK.SU » Научные и научно-популярные книги » Биология » Энциклопедия «Биология». Часть 1. А – Л (с иллюстрациями) - Александр Горкин

Энциклопедия «Биология». Часть 1. А – Л (с иллюстрациями) - Александр Горкин

Читать онлайн Энциклопедия «Биология». Часть 1. А – Л (с иллюстрациями) - Александр Горкин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 19 20 21 22 23 24 25 26 27 ... 31
Перейти на страницу:

БИОТЕХНОЛО́ГИЯ, использование живых организмов и биологических процессов для получения и переработки различных продуктов. Биотехнологические методы издавна применяются в хлебопечении, сыроварении, виноделии и других производствах с участием микроорганизмов (бактерий и микроскопических грибов). С сер. 20 в. микроорганизмы начали использовать для промышленного получения вначале антибиотиков, затем витаминов, аминокислот, ферментов, кормовых белков, бактериальных удобрений и др. Микробиологическая промышленность стала важной отраслью экономики во многих странах.

С возникновением в 1970-х гг. генной и клеточной инженерии, совершенствованием методов культивирования клеток и тканей в развитии биотехнологии начался новый этап. В это время появился и сам термин «биотехнология», употребляемый обычно только по отношению к промышленным технологиям, основанным на применении молекулярно-генетических подходов и методов.

К нач. 21 в. в биотехнологии сложилось несколько направлений. Относительно «старое» – крупнотоннажный микробиологический синтез – обогатилось новыми методами, повышающими его эффективность (получение и отбор продуктивных мутантов, использование генно-инженерных способов и др.). Напр., для увеличения производства незаменимой аминокислоты треонина в клетки продуцента – кишечной палочки – вводят дополнительные гены, ответственные за синтез этой аминокислоты.

Самостоятельным направлением в биотехнологии стало использование иммобилизованных ферментов, т.е. ферментов, закреплённых на каком-либо твёрдом носителе. При этом их эффективность и длительность использования возрастают многократно.

Развитие методов генной инженерии позволило создавать желаемое сочетание генов, клонировать их и вводить этот чужеродный генетический материал в клетки и целые организмы. Так, гены человека, ответственные за синтез определённых белков, встраивали в ДНК бактерий, которые приобретали способность синтезировать этот белок. Таким способом в 1980-х гг. был получен (с помощью кишечной палочки) препарат гормона углеводного обмена – человеческий инсулин. Чужеродные гены встраивают в геномы растительных и животных организмов, получая трансгенные растения и трансгенные животные с нужными человеку свойствами и признаками, напр. высокие урожайность и продуктивность, устойчивость к болезням, высоким и низким температурам, бо́льшая технологичность, упрощающая содержание животных и уборку урожая.

Клеточная инженерия обеспечила возможность получения высокопродуктивных культур растительных клеток, вырабатывающих биологически активные вещества для медицины. Клеточные гибриды между лимфоцитами крови и опухолевыми клетками (гибридомы) используют для получения антител (иммуноглобулинов) одного определённого вида (т.н. моноклональные антитела).

Клонирование, издавна широко применяющееся в растениеводстве и известное как вегетативное размножение, с кон. 20 в. стало использоваться и для размножения с.-х. животных (овечка Долли, полученная в Великобритании в 1997 г.).

Значение биотехнологии велико. Биологически активные вещества (антибиотики, витамины, ферменты и др.), полученные микробиологическим синтезом, находят широкое применение в медицине, сельском хозяйстве, в пищевой, лёгкой и др. отраслях промышленности. С помощью микроорганизмов из растительных отходов получают топливный биогаз (смесь метана и диоксида углерода), осуществляют обезвреживание и разложение промышленных и бытовых отходов, очистку сточных вод, выщелачивание металлов (золота, меди) из горных пород и отвалов. Полагают, что в недалёком будущем биотехнология способна решить основные проблемы человечества – охрану здоровья и окружающей среды, обеспечение пищей и источниками энергии.

БИОТИ́ЧЕСКАЯ СРЕДА́, совокупность живых организмов, которые своей жизнедеятельностью оказывают то или иное влияние на другие организмы. Одни растения (животные) создают биотическую среду для других растений и животных. Проявляется это во взаимном влиянии организмов разных видов, выражающемся в самых различных формах (пищевые цепи, симбиоз, паразитизм, хищничество, конкуренция и др.). Организмы могут влиять друг на друга не только прямо, но и опосредованно, изменяя в процессе жизнедеятельности абиотическую среду (напр., изменение микроклимата и гидрологического режима лесными растениями).

БИОТО́П, участок суши или водоёма, занятый определённым биоценозом, видовой состав которого определяется комплексом абиотических факторов (условиями рельефа, климата и др.). В более узком смысле биотоп рассматривается как среда существования комплекса животных и растений, входящих в биоценоз. Напр., биотопом можно считать открытый пресноводный водоём и его мелководье, где щуки охотятся, мечут икру и нагуливаются, или же участок со старыми деревьями, где грачи устраивают гнездовые колонии и находят пищу.

БИОФИ́ЗИКА, наука, изучающая физические процессы, протекающие в живых организмах, а также воздействие физических факторов (различных излучений, магнитного поля и др.) на отдельные организмы и их сообщества. Зарождение биофизики относят к 17 в., когда были сделаны первые попытки по применению законов механики (гидродинамики) к изучению кровообращения. В кон. 18 в. итальянский анатом Л. Гальвани открыл «животное электричество», положив начало электрофизиологии. В дальнейшем быстро развивались исследования физических основ восприятия звука и света (биоакустика и биооптика), превращения и обмена энергией в организмах и их сообществах (биоэнергетика). Применение современных физико-химических и математических методов к изучению широкого круга биологических объектов и явлений привело к формированию в биофизике многих новых направлений и выделению из неё самостоятельных наук – радиобиологии, фотобиологии, магнитобиологии, физики биополимеров и др. Результаты биофизических исследований широко используются в медицине (физиотерапия, ультразвуковая диагностика, применение лазеров в хирургии и т.д.).

БИОХИ́МИЯ, наука, изучающая химический состав живых организмов и химические процессы, лежащие в основе их жизнедеятельности. Исследование веществ органического происхождения, а также таких процессов, как брожение или пищеварение, началось давно, но как самостоятельная наука биохимия сложилась лишь к нач. 20 в. К этому времени были накоплены сведения о строении и биологической роли белков, жиров и углеводов, возникли представления о принципиальном сходстве химических превращений в клетках всех живых существ. Вместе с тем были выяснены характерные особенности обмена веществ у животных, растений и микроорганизмов.

К сер. 20 в. были открыты многие витамины и гормоны, установлены метаболические пути (последовательность реакций синтеза и распада) основных классов природных соединений, изучены реакции, обеспечивающие клетки энергией. Успехи в исследовании ферментов сформировали энзимологию как самостоятельное направление. Открытие в 1950-х гг. исключительной роли нуклеиновых кислот в явлениях наследственности и изменчивости, стремление понять функции биополимеров и других биологически важных молекул в связи с их строением, а также внедрение в биохимию физических методов исследования привели к выделению из биохимии молекулярной биологии.

Результаты, полученные биохимией, широко используются в медицине, в биотехнологии, в пищевой и микробиологической промышленности, в сельском хозяйстве.

БИОЦЕНО́З, совокупность организмов – популяций растений, животных, грибов, микроорганизмов, населяющих однородный участок суши или водоёма и характеризующихся определёнными взаимоотношениями (пищевые цепи, симбиоз и т.д.) и приспособленностью к условиям окружающей среды. Каждая группа организмов занимает в биоценозе определённую ступень экологической пирамиды (продуценты, консументы и редуценты). Примерами биоценозов могут служить совокупность организмов пруда, дубравы, соснового или берёзового леса и т.д. Во многих случаях границы биоценозов размыты и условны: напр., дубрава, сосновый или берёзовый лес постепенно через опушку переходят соответственно в суходольный луг, смешанный сосново-еловый лес, болото. Биоценозы, развиваясь, либо самообновляются (в сосновом лесу вырастает новое поколение сосен), либо стареют и сменяются другими биоценозами (сосна сменяется ельником, пруд заболачивается и т.п.), в результате могут происходить некоторые изменения и в абиотической среде (освещённость, влажность, тепло и т.д.). Наиболее сложно устроены и устойчивы биоценозы с высоким биологическим разнообразием организмов. В океане – это биоценозы коралловых рифов и водорослевых мелководий. На суше – биоценозы тропического леса и лесные биоценозы умеренного климата. Так, дубрава может быть образована более чем 100 видами растений, несколькими тысячами видов животных, сотнями видов грибов и микроорганизмов, в совокупности дающими плотность населения в десятки и сотни тысяч организмов на 1 м². При этом сухая биомасса дубравы составляет 4—5 кг/м², а биологическая продуктивность – 1,5 кг/м² в год. Биоценоз – функциональная часть более сложной системы – биогеоценоза.

1 ... 19 20 21 22 23 24 25 26 27 ... 31
Перейти на страницу:
На этой странице вы можете бесплатно скачать Энциклопедия «Биология». Часть 1. А – Л (с иллюстрациями) - Александр Горкин торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Вася
Вася 24.11.2024 - 19:04
Прекрасное описание анального секса
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит