Категории
Самые читаемые
RUSBOOK.SU » Научные и научно-популярные книги » Физика » 3a. Излучение. Волны. Кванты - Ричард Фейнман

3a. Излучение. Волны. Кванты - Ричард Фейнман

Читать онлайн 3a. Излучение. Волны. Кванты - Ричард Фейнман

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 18 19 20 21 22 23 24 25 26 ... 30
Перейти на страницу:

(37.1)

т. е. вероятности просто складываются. Действие двух дырок складывается из действий каждой дырки в отдельности. Этот результат наблюдений мы назовем отсутствием интерференции по причине, о которой вы узнаете после. На этом мы покончим с пулями.

Они приходят порциями, и вероятность их попадания скла­дывается без интерференции.

§ 3. Опыт с волнами

Теперь проведем опыт с волнами на воде. Прибор показан схематически на фиг. 37.2. Это мелкое корытце, полное воды. Предмет, обозначенный как «источник волн», колеблясь при по­мощи моторчика вверх и вниз, вызывает круговые волны. Справа от источника опять стоит перегородка с двумя отверстиями, а дальше — вторая стенка, которая для простоты сде­лана поглощающей (чтобы волны не отражались): насыпана песчаная отмель. Перед отмелью помещается детектор; его опять, как и раньше, можно передвигать по оси х. Теперь де­тектор — это устройство, измеряющее «интенсивность» вол­нового движения. Представьте себе приспособление, измеряю­щее высоту волн. Если его шкалу откалибровать пропорцио­нально квадрату высоты, то отсчеты шкалы смогут давать интенсивность волны. Детектор, таким образом, будет опре­делять энергию, переносимую волной, или, точнее, долю энер­гии, доставляемую детектору.

Первое, в чем можно убедиться при помощи такого волно­вого аппарата,— это что интенсивность может быть любой ве­личины. Когда источник движется еле-еле, то и детектор пока­зывает тоже чуть заметное движение. Если же движение возрастет, то и в детекторе интенсивность подскочит. Интенсив­ность волны может быть какой угодно. Мы уже не скажем, что в интенсивности есть какая-то «порционность».

Заставим теперь волновой источник работать стабильно, а сами начнем измерять интенсивность волн при различных значениях х. Мы получим интересную кривую (кривая I12 на фиг. 37.2,в).

Но мы уже видели, откуда могут возникать такие картин­ки,— это было тогда, когда мы изучали интерференцию элек­трических волн. И здесь можно видеть, как первоначальная волна дифрагирует на отверстиях, как от каждой щели расходят­ся круги волн. Если на время одну щель прикрыть и измерить распределение интенсивности у поглотителя, то кривые вый­дут довольно простыми (см. фиг. 37.2,б)

Фиг. 37.2. Опыт с волнами на воде.

Кривая I1 — это интенсивность волн от щели 1 (когда ее измеряли, щель 2 была закрыта), а кривая I2 — интенсивность волн от щели 2 (при закрытой щели 1).

Мы видим со всей определенностью, что интенсивность /12, наблюдаемая, когда оба отверстия открыты, не равна сум­ме интенсивностей I1 и I2. Мы говорим, что здесь происходит «интерференция», наложение двух волн. В некоторых местах: (где на кривой Ii2 наблюдается максимум) волны оказываются «в фазе», пики волн складываются вместе, давая большую ам­плитуду и тем самым большую интенсивность. В этих местах говорят о «конструктивной интерференции». Она наблюдается в тех местах, расстояние которых от одной из щелей на целое число длин волн больше (или меньше) расстояния от другой.

А в тех местах, куда две волны приходят со сдвигом фаз p(т. е. находятся «в противофазе»), движение водил представ­ляет собой разность двух амплитуд. Волны «интерферируют деструктивно», интенсивность получается маленькой. Это бывает там, где расстояние от щели 1 до детектора отличается от расстояния между детектором и щелью 2 на нечетное число полуволн. Малые значения I12 на фиг. 37.2 отвечают местам, где две волны интерферируют деструктивно.

Вспомните теперь, что количественную связь между I1, I2 и I12 можно выразить следующим образом: мгновенная высо­та волны в детекторе от щели 1 может быть представлена в виде (действительной части) h’1eiwt, где «амплитуда» h’1, вообще говоря, комплексное число. Интенсивность пропорциональна среднему квадрату высоты, или, пользуясь комплексными числами, |h’1|2. Высота волн от щели 2 тоже равна h2eiwt, а интенсивность пропорциональна |h’2|2. Когда обе щели открыты, высоты волн складываются, давая высоту (h’1+h’2)eiwt

и интенсивность |h1+h2|2. Множитель пропорциональности нас сейчас не интересует, так что формулу для интерфери­рующих волн можно записать в виде

Вы видите, что ничего похожего на то, что было с пулями, не получается. Раскрыв h1+h2|2, мы напишем

где d-—разность фаз между h1 и h2 . Вводя интенсивности из (37.2), можем написать

Последний член и есть «интерференционный член».

На этом мы покончим с волнами. Интенсивность их мо­жет быть любой, между ними возникает интерференция.

§ 4. Опыт с электронами

Представим себе теперь такой же опыт с электронами. Схема его изображена на фиг. 37.3. Мы поставим электронную пушку, которая состоит из вольфрамовой проволочки, нагреваемой то­ком и помещенной в металлическую коробку с отверстием. Если на проволочку подано отрицательное напряжение, а на короб­ку — положительное, то электроны, испущенные проволокой, будут разгоняться стенками и некоторые из них проскочат сквозь отверстие. Все электроны, которые выскочат из пушки, будут обладать (примерно) одинаковой энергией. А перед пуш­кой мы поставим снова стенку (на этот раз тонкую металлическую пластинку) с двумя дырочками

Фиг. 37.3. Опыт с электронами.

За стенкой стоит другая пластинка, она служит «земляным валом», поглотителем. Перед нею — подвижный детектор, скажем счетчик Гейгера, а еще лучше — электронный умножитель, к которому подсоединен динамик.

Заранее предупреждаем вас: не пытайтесь проделать этот опыт (в отличие от первых двух, которые вы, быть может, уже проделали). Этот опыт никогда никто так не ставил. Все дело в том, что для получения интересующих нас эффектов при­бор должен быть чересчур миниатюрным. Мы с вами ставим сейчас «мысленный эксперимент», отличающийся от других тем, что его легко обдумать. Что должно в нем получиться, из­вестно заранее, потому что уже проделано множество опытов на приборах, размеры и пропорции которых были подобраны так, чтобы стал заметен тот эффект, который мы сейчас опишем.

Первое, что мы замечаем в нашем опыте с электронами, это резкие «щелк», «щелк», доносящиеся из детектора (вернее, из динамика). Все «щелк» одинаковы. Никаких «полу­щелков».

Мы замечаем также, что они следуют совершенно не регулярно. Скажем, так: щелк..... щелк-щелк... щелк.........

щелк .... щелк-щелк ... ... щелк ... и т. д. Кому случалось видеть

счетчик Гейгера, знает, как он щелкает. Если подсчитать, сколь­ко раз динамик щелкнул за достаточно длительное время (ска­жем, за несколько минут), а потом снова подсчитать, сколько он отщелкал за другой такой же промежуток времени, то оба числа будут почти одинаковыми. Можно поэтому говорить о средней частоте, с которой слышатся щелчки (столько-то «щелк» в минуту в среднем).

Когда мы переставляем детектор, частота щелчков то рас­тет, то падает, но величина (громкость) каждого «щелк» всегда остается одной и той же. Если мы охладим проволоку в пушке, частота щелчков спадет, но каждый «щелк» будет звучать, как прежде. Поставим у поглотителя два отдельных детектора; тогда мы сразу заметим, что щелкает то один из них, то другой, но никогда оба вместе. (Разве что иногда наше ухо не раз­делит двух щелчков, последовавших очень быстро один за дру­гим.) Мы заключаем поэтому, что все, что попадает в детектор, приходит туда «порциями». Все «порции» одной величины; в детектор (или поглотитель) попадает только целая «порция»; в каждый момент в поглотитель попадает только одна порция, Мы говорим: «Электроны всегда приходят одинаковыми пор­циями».

Как и в опыте со стрельбой из пулемета, мы попытаемся теперь поискать в новом опыте ответ на вопрос: «Какова отно­сительная вероятность того, что электронная «порция» попадет в поглотитель на разных расстояниях х от середины?» Как и в том опыте, мы получим относительную вероятность, подсчи­тывая частоту щелчков при стабильно работающей пушке. Вероятность, что порции окажутся на определенном расстоя­нии х, пропорциональна средней частоте щелчков при этом х. В результате нашего опыта получена интереснейшая кривая p12, изображенная на фиг. 37.3,в. Да! Именно так и ведут себя электроны!

§ 5. Интерференция электронных волн

1 ... 18 19 20 21 22 23 24 25 26 ... 30
Перейти на страницу:
На этой странице вы можете бесплатно скачать 3a. Излучение. Волны. Кванты - Ричард Фейнман торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит