Категории
Самые читаемые
RUSBOOK.SU » Компьютеры и Интернет » Интернет » Linux программирование в примерах - Роббинс Арнольд

Linux программирование в примерах - Роббинс Арнольд

Читать онлайн Linux программирование в примерах - Роббинс Арнольд

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 208 209 210 211 212 213 214 215 216 ... 253
Перейти на страницу:

Это значит: «если t1.tv_sec меньше, чем t2.tv_sec, ИЛИ если они равны и t1.tv_usec меньше, чем t2.tv_usec, тогда…».

14.3.2. Файловое время в микросекундах: utimes()

В разделе 5.5.3 «Изменение временных отметок: utime()» был описан системный вызов utime() для установки времени последнего обращения и изменения данного файла. Некоторые файловые системы хранят эти временные отметки с разрешением в микросекунды (или еще точнее). Такие системы предусматривают системный вызов utimes() (обратите внимание на завершающую s в названии) для установки времени обращения к файлу и его изменения с точностью до микросекунд:

#include <sys/time.h> /* XSI */

int utimes(char *filename, struct timeval tvp[2]);

Аргумент tvp должен указывать на массив из двух структур struct timeval, значения используются для времени доступа и изменения соответственно. Если tvp равен NULL, система использует текущее время дня.

POSIX обозначает ее как «традиционную» функцию, что означает, что она стандартизуется лишь для поддержки старого кода и не должна использоваться для новых приложений. Главная причина, пожалуй, в том, что нет определенного интерфейса для получения времени доступа и изменения файла в микросекундах; struct stat содержит лишь значения time_t, а не значения struct timeval.

Однако, как упоминалось в разделе 5.4.3 «Только Linux: указание файлового времени повышенной точности», Linux 2.6 (и более поздние версии) действительно предоставляет доступ к временным отметкам с разрешением в наносекунды при помощи функции stat(). Некоторые другие системы (такие, как Solaris) также это делают.[157] Таким образом, utimes() полезнее, чем кажется на первый взгляд, и несмотря на ее «традиционный» статус, нет причин не использовать ее в своих программах.

14.3.3. Интервальные таймеры: setitimer() и getitimer()

Функция alarm() (см. раздел 10.8.1 «Сигнальные часы: sleep(), alarm() и SIGALRM») организует отправку сигнала SIGALRM после истечения данного числа секунд. Ее предельным разрешением является одна секунда. Здесь также BSD 4.2 ввело функцию и три различных таймера, которые используют время в долях секунды.

Интервальный таймер подобен многократно использующимся сигнальным часам. Вы устанавливаете начальное время, когда он должен «сработать», а также как часто это должно впоследствии повторяться. Оба этих значения используют объекты struct timeval; т.е. они (потенциально) имеют разрешение в микросекундах. Таймер «срабатывает», доставляя сигнал; таким образом, нужно установить для таймера обработчик сигнала, желательно до установки самого таймера.

Существуют три различных таймера, описанных в табл. 14.2.

Таблица 14.2. Интервальные таймеры

Таймер Сигнал Функция ITIMER_REAL SIGALRM Работает в реальном режиме ITIMER_VIRTUAL SIGVTALRM Работает, когда процесс выполняется в режиме пользователя ITIMER_PROF SIGPROF Работает, когда процесс выполняется в режиме пользователя или ядра.

Использование первого таймера, ITIMER_REAL, просто. Таймер работает в реальном времени, посылая SIGALRM по истечении заданного количества времени. (Поскольку посылается SIGALRM, нельзя смешивать вызовы setitimer() с вызовами alarm(), а смешивание их с вызовом sleep() также опасно; см. раздел 10.8.1 «Сигнальные часы, sleep(), alarm() и SIGALRM».)

Второй таймер, ITIMER_VIRTUAL, также довольно прост. Он действует, когда процесс исполняется, но лишь при выполнении кода пользователя (приложения) Если процесс заблокирован во время ввода/вывода, например, на диск, или, еще важнее, на терминал, таймер приостанавливается.

Третий таймер, ITIMER_PROF, более специализированный. Он действует все время, пока выполняется процесс, даже если операционная система делает что-нибудь для процесса (вроде ввода/вывода). В соответствии со стандартом POSIX, он «предназначен для использования интерпретаторами при статистическом профилировании выполнения интерпретируемых программ». Установив как для ITIMER_VIRTUAL, так и для ITIMER_PROF идентичные интервалы и сравнивая разницу времени срабатывания двух таймеров, интерпретатор может узнать, сколько времени проводится в системных вызовах для выполняющейся интерпретируемой программы[158]. (Как сказано, это довольно специализировано.) Двумя системными вызовами являются:

#include <sys/time.h> /* XSI */

int getitimer(int which, struct itimerval *value);

int setitimer(int which, const struct itimerval *value,

 struct itimerval *ovalue);

Аргумент which является одной из перечисленных ранее именованных констант, указывающих таймер, getitimer() заполняет struct itimerval, на которую указывает value, текущими установками данного таймера, setitimer() устанавливает для данного таймера значение в value. Если имеется ovalue, функция заполняет ее текущим значением таймера. Используйте для ovalue NULL, если не хотите беспокоиться о текущем значении. Обе функции возвращают в случае успеха 0 и -1 при ошибке, struct itimerval состоит из двух членов struct timeval:

1 ... 208 209 210 211 212 213 214 215 216 ... 253
Перейти на страницу:
На этой странице вы можете бесплатно скачать Linux программирование в примерах - Роббинс Арнольд торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит