Категории
Самые читаемые
RUSBOOK.SU » Научные и научно-популярные книги » Математика » Истина и красота. Всемирная история симметрии. - Иэн Стюарт

Истина и красота. Всемирная история симметрии. - Иэн Стюарт

Читать онлайн Истина и красота. Всемирная история симметрии. - Иэн Стюарт

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 16 17 18 19 20 21 22 23 24 ... 85
Перейти на страницу:

В переводе с латыни заглавие диссертации Гаусса звучало как «Новое доказательство, что каждую рациональную целую функцию одного переменного можно разложить на вещественные множители первой или второй степени». Если пробиться через профессиональные термины, принятые в то время, то заглавие утверждает, что каждый многочлен (с вещественными коэффициентами) равен произведению выражений, представляющих собой линейные или квадратичные многочлены.

Гаусс использовал слово «вещественные», чтобы ясно показать: он работает в рамках традиционной числовой системы, в которой отрицательные величины не имеют квадратных корней. В наши дни мы бы выразили теорему Гаусса в логически равносильном, но более простом виде: каждый вещественный многочлен степени n имеет n вещественных или комплексных корней. Но Гаусс тщательно подбирал выражения таким образом, чтобы его работа не опиралась на все еще несколько сбивающую с толку систему комплексных чисел. Комплексные корни вещественного многочлена всегда можно собрать в пары, что приводит к вещественным квадратичным множителям, а линейные множители отвечают вещественным корням. Сформулировав заглавие в терминах множителей этих двух типов («множители первой или второй степени»), Гаусс обошел стороной спорный вопрос о комплексных числах.

Одно слово в заглавии не оправданно: «новое» предполагает, что имеются «старые» доказательства. Гаусс дал первое строгое доказательство этой фундаментальной теоремы в алгебре. Но чтобы не обижать прославленных предшественников, утверждавших, что у них имелись доказательства — которые все оказались ошибочными, — Гаусс представил свое выдающееся достижение как всего лишь самое свежее доказательство, опирающееся на новые (то есть правильные) методы.

Эта теорема получила известность как Основная Теорема Алгебры. Гаусс считал ее настолько важной, что дал в общей сложности четыре доказательства, причем последнее — когда ему было 70 лет. Лично он не испытывал никаких колебаний или сомнений по поводу комплексных чисел: они играли значительную роль в его мыслительном процессе, и впоследствии он сформировал собственное объяснение их смысла. Однако он старался избегать разногласий. С годами он стал замалчивать многие из своих оригинальных идей — неэвклидову геометрию, комплексный анализ и строгий подход к комплексным числам, — потому что не хотел вызывать то, что он называл «плачем беотийцев».

Гаусс не ограничивался чистой математикой. В начале 1801 года итальянский священник и астроном Джузеппе Пьяцци открыл новую планету или то, что ему представлялось планетой, — тусклое пятно света в телескопе, от ночи к ночи менявшее свое положение на фоне звезд, что было верным признаком принадлежности тела к Солнечной системе. Планете должным образом дали имя Церера[21], но на самом деле это оказался астероид — первый открытый астероид в истории. Не успел Пьяцци обнаружить новый мир, как тут же потерял его в блеске Солнца. Он сумел сделать так мало наблюдений, что астрономы не могли вычислить орбиту нового тела и беспокоились, что не найдут его, когда оно снова выйдет из-за Солнца.

Это была задача, достойная Гаусса, и он охотно за нее взялся. Он изобрел улучшенные способы определения орбит исходя из малого числа наблюдений и предсказал, где должна появиться Церера. Когда так и произошло, молва о Гауссе распространилась повсеместно. Путешественник и естествоиспытатель Александр фон Гумбольдт попросил Пьера-Симона де Лапласа — специалиста по небесной механике — назвать величайшего математика в Германии и получил ответ: «Пфафф». Когда недоумевающий Гумбольдт спросил: «А Гаусс?» — Лаплас ответил: «Гаусс — величайший математик в мире».

К сожалению, новоявленное светило отвлекло его от чистой математики на длинные вычисления для расчета орбиты, что можно было считать растратой его неординарных способностей. Не в том дело, что небесная механика не важна, — просто эту работу могли бы проделать и другие, менее талантливые математики. С другой стороны, из-за этого его дальнейшая жизнь полностью устроилась. Гаусс уже некоторое время искал постоянное место работы, которое оставляло бы возможность для общественного служения, с тем чтобы отдать должное своему покровителю — герцогу. Его работа о Церере привела к тому, что он стал директором Геттингенской обсерватории, и этот пост он занимал всю свою научную жизнь.

В 1805 году он женился на Иоанне Остхофф. В письме к Бойяи он так описывал свою новую жену: «Прекрасное лицо Мадонны, зерцало мира и здоровья, нежные, несколько мечтательные глаза, безупречная фигура — это одна сторона; яркий ум и развитая речь — это другая; но мягкая, безмятежная и целомудренная душа ангела, не причиняющая зла ни одному созданию, — это лучшее». Иоанна родила ему двоих детей, но в 1809 году умерла при родах, и убитый горем Гаусс «закрыл ее ангельские глаза, в которых я видел свой рай последние пять лет». Он начал страдать от одиночества, впал в депрессию, и жизнь уже никогда не была для него прежней. Он нашел новую жену — лучшую подругу Иоанны Минну Вальдек, но брак был не самым счастливым, несмотря на рождение еще троих детей. Гаусс постоянно спорил с сыновьями, а дочерям указывал, что им следует делать, и молодым людям настолько надоело это терпеть, что они уехали из Европы в Соединенные Штаты, где в дальнейшем преуспели.

Вскоре после начала своего директорства в Геттингене Гаусс вернулся к старой идее — возможности нового типа геометрии, которая удовлетворяла бы всем эвклидовым аксиомам, кроме аксиомы о параллельных прямых. В конце концов он пришел к убеждению, что логически непротиворечивые неэвклидовы геометрии возможны, но так и не опубликовал свои результаты из опасений, что их сочтут слишком радикальными. Янош Бойяи — сын его старого друга Вольфганга — позднее сделал аналогичные открытия, но Гаусс не счел возможным похвалить его работу, потому что сам предвосхитил многое из сделанного им. Еще некоторое время спустя, когда Николай Иванович Лобачевский независимо переоткрыл неэвклидову геометрию, Гаусс сделал его членом-корреспондентом Геттингенской Академии, но опять не высказал никакого публичного одобрения.

Годы спустя, по мере того как математики более подробно изучили эти новые геометрии, их стали интерпретировать как геометрии «геодезических» — кратчайших — путей на искривленных поверхностях. Если поверхность имеет постоянную положительную кривизну, как сфера, то геометрия называется эллиптической. Если кривизна постоянна и отрицательна (поверхность в каждой своей точке по форме напоминает седло), то это гиперболическая геометрия. Эвклидова геометрия соответствует нулевой кривизне — плоскому пространству. Эти геометрии можно охарактеризовать их метрикой — формулой для расстояния между двумя точками.

Эти идеи могли привести Гаусса к более общему исследованию искривленных поверхностей. Он вывел прекрасную формулу для величины кривизны и доказал, что она дает один и тот же результат в любой системе координат. В такой формулировке кривизна не обязательно должна быть постоянной: она может изменяться от точки к точке.

В зрелом возрасте Гаусс обратился к практическим применениям — вещь, нередкая среди математиков. Он консультировал несколько землемерных проектов, самым большим из которых была триангуляция области Ганновера. Он активно участвовал в полевых работах, а потом анализировал данные. Для облегчения этих работ он изобрел гелиотроп — прибор для обмена сигналами в отраженном свете. Но когда его стало подводить сердце, он прекратил занятия геодезией и решил провести оставшиеся годы в Геттингене.

В тот несчастливый для Гаусса период молодой норвежец по имени Абель написал ему о невозможности решения уравнения пятой степени в радикалах, но не получил ответа. Вероятно, Гаусс был слишком подавлен даже для того, чтобы взглянуть на статью.

Около 1833 года Гаусс заинтересовался магнетизмом и электричеством. Совместно с физиком Вильгельмом Вебером он работал над книгой, озаглавленной «Общая теория земного магнетизма», которая вышла в 1839 году. Они также изобрели телеграф, связавший Гауссову обсерваторию с физической лабораторией, где работал Вебер, но провода непрерывно рвались, и другие изобретатели предложили более практичный проект. Вебера выгнали из Геттингена вместе с шестью другими учеными из-за их отказа принести присягу новому королю Ганновера Эрнсту Августу. Гаусса это сильно расстроило, но его политический консерватизм и нежелание «поднимать волну» не позволили ему выступить с каким-либо публичным протестом, хотя в кулуарах он и пытался поддержать Вебера.

В 1845 году Гаусс написал докладную записку по поводу пенсионного фонда для вдов геттингенских профессоров, в котором проанализировал возможное влияние резкого увеличения числа членов фонда. Он вкладывал деньги в правительственные фонды и железнодорожные акции и составил порядочное состояние.

1 ... 16 17 18 19 20 21 22 23 24 ... 85
Перейти на страницу:
На этой странице вы можете бесплатно скачать Истина и красота. Всемирная история симметрии. - Иэн Стюарт торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит