Краткая история химии. Развитие идей и представлений в химии - Азимов Айзек
Шрифт:
Интервал:
Закладка:
Химики, имевшие дело с самыми обычными соединениями и пользовавшиеся самыми обычными методами, осуществить превращение, требовавшее участия жизненных сил, естественно, не могли.
Первые сомнения в справедливости такого утверждения возникли после опубликования в 1828 г. работы Фридриха Вёлера (1800—1882), немецкого химика, ученика Берцелиуса. Вёлера, в частности, интересовали цианиды и родственные им соединения. Нагревая цианат аммония (в то время это соединение безоговорочно причисляли к неорганическим веществам, не имеющим ничего общего с живой материей), Вёлер обнаружил, что в процессе нагревания образуются кристаллы, похожие на мочевину — продукт жизнедеятельности человека и животных, выделяющийся в значительных количествах с мочой. Тщательно изучив эти кристаллы, Вёлер установил, что он действительно получил мочевину — бесспорно органическое соединение.
Вёлер несколько раз повторил опыт и, убедившись, что он по своему желанию может превращать неорганическое соединение (цианат аммония) в органическое (мочевину), сообщил о своем открытии Берцелиусу. Берцелиус был упрямым человеком, который редко менял свое мнение под чьим-либо влиянием, однако в этом случае он вынужден был согласиться, что проведенное им, Берцелиусом, разделение на органические и неорганические соединения оказалось не таким четким, как он полагал.
Однако не надо переоценивать значения этой работы Вёлера [47]. Сама по себе она не столь уж существенна. Строго говоря, цианат аммония не является типичным неорганическим соединением, но даже если считать его таковым, то превращение цианата аммония в мочевину (как со временем и было показано) является просто результатом изменения расположения атомов внутри молекулы. И в самом деле, ведь молекула мочевины фактически является перестроенной молекулой все того же цианата аммония.
И тем не менее значение открытия Вёлера отрицать нельзя. Оно способствовало низвержению витализма [48] и вдохновило химиков на попытки синтеза органического вещества; не будь этого открытия, химики направили бы свои усилия в другом направлении.
В 1845 г. Адольф Вильгельм Герман Кольбе (1818—1884), ученик Вёлера, успешно синтезировал уксусную кислоту, считавшуюся в его время несомненно органическим веществом. Более того, он синтезировал ее таким методом, который позволил проследить всю цепь химических превращений — от исходных элементов (углерода, водорода и кислорода) до конечного продукта — уксусной кислоты. Именно такой синтез из элементов, или полный синтез, и был необходим. Если синтез мочевины Вёлера породил сомнения относительно существования «жизненной силы», то синтез уксусной кислоты Кольбе позволил решить этот вопрос.
Французский химик Пьер Эжен Марселен Бертло (1827—1907) [49]в 50-е годы XIX в. начал систематическую разработку синтеза органических соединений и достиг больших успехов. Он синтезировал, в частности, такие хорошо известные и важные соединения, как метиловый и этиловый спирты, метан, бензол, ацетилен. Бертло «нарушил границу» между неорганической и органической химией, покончив с пресловутым «запретом». В дальнейшем такое «нарушение границ» стало обычным.
«Кирпичики» жизни
Вёлер, Кольбе и Бертло синтезировали относительно простые органические соединения, тогда как для живой природы характерны значительно более сложные соединения типа крахмала, жиров и белков. Изучать такие соединения гораздо труднее; непросто даже установить их точный элементный состав. В целом изучение органических веществ обещало разгадку многих проблем, но подступиться к этим веществам химику прошлого века было совсем непросто.
Вначале об этих сложных соединениях было известно только то, что их можно разбить на сравнительно простые «строительные блоки» («кирпичики»), нагревая их с разбавленной кислотой или разбавленным основанием. Русский химик Константин Сигизмундович Кирхгоф (1764—1833) первым занялся детальным изучением этого вопроса. В 1812 г. ему удалось превратить крахмал, нагревая его с кислотой, в сахар, который впоследствии получил название глюкозы[50].
В 1820 г. французский химик Анри Браконно (1780—1854) таким же способом обрабатывал желатину (продукт денатурирования белка) и получил глицин — азотсодержащую органическую кислоту, относящуюся к той группе веществ, которые впоследствии были названы (Берцелиусом) аминокислотами. Глицин был первой из двадцати различных аминокислот, выделенных в следующем веке из природных белков [51].
И крахмал, и белок имеют гигантские молекулы, построенные, как выяснилось позднее, из длинных цепей, состоящих из остатков глюкозы и аминокислот соответственно. Химики XIX в. практически были лишены возможности синтезировать эти длинные цепи в лаборатории. Иначе дело обстояло с жирами.
Французский химик Мишель Эжен Шеврель (1786—1889) посвятил первую половину своей очень долгой творческой жизни изучению жиров. В 1809 г. он обработал мыло (полученное нагреванием жира со щелочью) кислотой и выделил то, что мы теперь называем жирными кислотами. Позднее он показал, что, превращаясь в мыло, жиры теряют глицерин.
Молекула глицерина сравнительно простая и построена таким образом, что к ней легко могут «прикрепиться» дополнительные группы атомов.
Следовательно, вполне логично было предположить, что, в то время как крахмал и белки, скорее всего, построены из большого числа простых остатков молекул, с жирами дело обстоит иначе. До середины XIX в. считалось, что жиры, вероятно, построены из остатков только четырех молекул: молекулы глицерина и трех молекул жирных кислот.
На этом этапе свое слово сказал Бертло. В 1854 г. он, нагревая глицерин со стеариновой кислотой (одной из самых распространенных жирных кислот, полученных из жиров), получил молекулу, состоящую из остатка молекулы глицерина и трех остатков молекул стеариновой кислоты. Этот тристеарин, который оказался идентичен тристеарину, полученному из природных жиров, был самым сложным из синтезированных к тому времени аналогов природных продуктов.
Бертло сделал еще более важный шаг. Вместо стеариновой кислоты он взял кислоты, похожие на нее, но полученные не из природных жиров, и также нагрел их с глицерином. В результате Бертло получил соединения, очень похожие на обычные жиры, но несколько отличающиеся от любого из природных жиров.
Этот синтез показал, что химик не только способен синтезировать аналоги природных продуктов, он в состоянии сделать большее. Например, он может синтезировать из продуктов неживой природы соединение, по всем своим свойствам являющееся органическим. Именно с синтезом аналогов природных продуктов связаны самые крупные достижения органической химии второй половины XIX в. (см. гл. 10).
К середине XIX в. стало уже непопулярным причислять то или иное соединение к органическим или неорганическим, исходя лишь из того, является или не является оно продуктом живой ткани. В то время уже были известны такие органические соединения, которые никак не могли быть продуктами жизнедеятельности организмов. Тем не менее деление соединений на органические и неорганические имело смысл. Свойства соединений этих классов, как выяснилось, настолько различаются, что даже приемы работы химика-органика и химика-неорганика совершенно различны.
Становилось все более очевидным, что различие между органическими и неорганическими соединениями обусловлено особенностями химического строения молекул этих соединений. Многие химики начали говорить о разных типах строения молекул органических и неорганических соединений. Молекулы большинства неорганических веществ, с которыми имели дело химики XIX в., содержат всего от двух до восьми атомов. Да и вообще в молекулах очень немногих неорганических соединений число атомов достигает десятка.