Глаз, мозг, зрение - Дэвид Хьюбел
Шрифт:
Интервал:
Закладка:
Такого рода тесты ясно показывают, что от каждого глаза сигналы передаются в оба полушария и что, наоборот, каждое полушарие мозга получает входные сигналы от обоих глаз. Это может показаться странным: после того что было сказано об осязательной и болевой чувствительности и о системе управления движениями, читатель может предположить, что левый глаз должен посылать сигналы в правое полушарие и наоборот. Однако в случае зрительной системы каждое полушарие мозга имеет дело не с противоположной стороной тела, а с противоположной половиной окружающего пространства. Но, впрочем, ситуация, когда сигналы от левого глаза передаются в основном в правое полушарие (и наоборот), имеет место у многих низших млекопитающих, таких как лошади и мыши, а у птиц и земноводных осуществляется даже полное перекрещивание зрительных нервов. У лошадей и мышей глаза расположены так, что они скорее направлены вбок, чем прямо вперед, в результате чего на большей части сетчатки правого глаза отображается правое зрительное поле, тогда как у приматов глаза направлены прямо вперед и на каждой сетчатке имеются отображения как правого, так и левого зрительного поля. Сделанное выше описание зрительных путей относится только к тем млекопитающим, у которых глаза смотрят более или менее прямо (как, например, у приматов) и поэтому видят почти один и тот же участок окружающего мира.
Сходным образом устроена и слуховая система. Понятно, что каждое ухо способно слышать звуки, исходящие как из левой, так и из правой половины окружающего пространства. Подобно глазам, каждое ухо передает информацию о звуке примерно в равной степени в обе половины мозга. При этом в слуховой системе, как и в зрительной, процесс передачи информации латерализован: звук, доходящий до каждого уха от некоторого источника с правой стороны, анализируется в стволе мозга путем сравнения амплитуд и моментов прихода сигналов к тому и другому уху, и в результате реакция на этот звук формируется в основном в высших отделах левой половины мозга.
Здесь мы говорим о начальных этапах переработки информации. Если справа от меня стоит человек, который словами или жестами побуждает меня сделать что-нибудь левой рукой, то сообщаемая им информация рано или поздно должна попасть в правое полушарие моего мозга. Однако первоначально сигналы должны прийти в слуховую или зрительную кору левого полушария, и только после этого они передаются в моторную кору правого полушария.
Между прочим, никто не знает, почему правая половина окружающего пространства обычно проецируется в левое полушарие головного мозга. Из этого правила есть одно важное исключение — полушария мозжечка (отдел мозга, который в основном управляет движениями) получают входные сигналы главным образом от той же самой, а не противоположной стороны окружающего пространства. Это усложняет работу мозга, поскольку все волокна, соединяющие одно полушарие мозжечка с моторной корой в другом полушарии большого мозга, должны переходить с одной стороны мозга на другую. По поводу такой организации можно пока сказать лишь то, что она кажется загадочной.
Слоистая структура наружного коленчатого тела (НКТ)Каждое из НКТ содержит по шесть клеточных слоев. Отдельный слой имеет толщину в несколько клеток (от 4 до 10 и более). Весь этот шестислойный сэндвич согнут таким образом, что его поперечный срез имеет вид, показанный на рис. 38.
При переходе от сетчатки к НКТ простая схема, в которой каждый последующий слой клеток содержит проекцию предыдущего, становится более сложной. В НКТ проекции от сетчаток двух глаз объединяются, и два отдельных изображения, представленные на уровне ганглиозных клеток в сетчатках, проецируются на шесть слоев НКТ. Волокна от правого и левого глаза не конвергируют на одни и те же клетки НКТ — каждая из этих клеток получает сигналы только от какого-то одного глаза. Два множества клеток разнесены по отдельным слоям, так что в любом слое все клетки получают информацию только от одного глаза. Эти слои расположены таким образом, что проекции от правого и левого глаза чередуются. Так, в левом НКТ проекции располагаются в следующем порядке (от поверхности в глубину): левая, правая, левая, правая, правая, левая. Не совсем ясно, почему последовательность 5-го и 6-го слоев «перевернута» (иногда мне кажется, что это сделано для того, чтобы порядок проекций было труднее запомнить). У нас пока нет никакого вразумительного объяснения самого факта чередования проекций.
Рис. 38. Левое наружное коленчатое тело макака. Ясно видны шесть клеточных слоев. Срез сделан параллельно фронтальной плоскости; он специально окрашен для выявления тел нейронов (каждое из них выглядит как точка).
В целом шестислойная нейронная структура имеет одну общую топографию для всех слоев. Левые половины обеих сетчаток проецируются в слои левого НКТ (рис. 39), а правые половины — в слои правого НКТ. Любая точка в одном слое НКТ соответствует некоторой точке в поле зрения того или другого глаза. Если двигаться вдоль слоя НКТ, то соответственная точка в поле зрения будет перемещаться по некоторой траектории, определяемой характером отображения зрительного поля на НКТ. Если же двигаться перпендикулярно слоям НКТ (например, вдоль черной штриховой линии на рис. 38), как двигался бы микроэлектрод, проходя через разные слои, то соответствующие рецептивные поля клеток оставались бы в одном и том же участке поля зрения; при этом наблюдалось бы только чередование проекций от разных глаз, за исключением, конечно, того места, где идут подряд две проекции от одного глаза. Таким образом, каждая половина поля зрения шестикратно отображается на каждое из НКТ, трижды для каждого глаза, а проекции в слоях НКТ располагаются в точности друг под другом.
Рис. 39. При переходе от сетчатки к НКТ пространственная упорядоченность нейронов сохраняется, хотя на этом пути она временно исчезает, когда волокна собираются в пучок; в НКТ они снова «находят свои места».
Наружное коленчатое тело выглядит как состоящее из двух частей. Его подразделяют на вентральные, или нижние, слои и четыре дорсальных, или верхних, слоя (вентральный — расположенный ближе к брюшной стороне тела, дорсальный — к спинной стороне). Вентральная часть НКТ образует особую структуру, так как клетки в соответствующих слоях отличаются от клеток в остальных четырех слоях — они крупнее и по-иному отвечают на зрительные стимулы. В то же время четыре слоя дорсальной части НКТ как гистологически, так и по своим электрофизиологическим свойствам сходны друг с другом. Поскольку величина клеток в этих двух отделах различна, вентральные слои стали называть крупноклеточными, а дорсальные — мелкоклеточными.
Волокна, выходящие из шести слоев НКТ, объединяются в один широкий пучок, называемый зрительной радиацией, который идет вверх до первичной зрительной коры (см. рис. 35). Здесь эти волокна равномерно расходятся и перераспределяются так, что образуется целостная проекция с топографической организацией (это аналогично распределению волокон зрительного нерва при входе его в НКТ). И вот, наконец, мы подходим к коре.
Ответы клеток в кореГлавная тема этой главы — вопрос о том, как клетки в первичной зрительной коре отвечают на зрительные стимулы. Рецептивные поля нейронов НКТ имеют такую же организацию (разделение на центр и периферию), как и рецептивные поля ганглиозных клеток сетчатки, которые посылают свои аксоны к клеткам НКТ. Подобно ганглиозным клеткам сетчатки, нейроны НКТ различаются между собой главным образом свойствами рецептивного поля (on- или off-центр, местоположение в поле зрения) и особенностями ответов на цветовые стимулы. Возникает вопрос: а как обстоит дело с корковыми нейронами? Сходны ли они с клетками НКТ, посылающими в кору свои аксоны, или же у них появляются какие-то новые особенности? Ответ, как читатель уже должен догадаться, такой: корковые клетки действительно обладают новыми качествами, причем настолько необычными, что вплоть до 1958 года, когда их впервые стали изучать с помощью сложных световых стимулов, никто не мог даже приблизительно предсказать эти свойства.
Первичная зрительная кора (стриарная кора) представляет собой слой клеток толщиной 2 мм и площадью в несколько квадратных дюймов.[1] Для того чтобы дать представление о размерах этой нейронной структуры, можно привести такие цифры: если НКТ содержит полтора миллиона клеток, то стриарная кора — около 200 миллионов клеток. Анатомическая структура стриарной коры удивительно сложна, однако нет необходимости знать ее детали, чтобы понять, каким образом преобразуется здесь поступающая зрительная информация. Более подробно строение этого отдела будет рассмотрено в следующей главе, где будет обсуждаться вопрос о его функциональной архитектуре.