Категории
Самые читаемые
RUSBOOK.SU » Детская литература » Детская образовательная литература » Биоэнергетика. Мир и Россия. Биогаз. Теория и практика. Монография - Евгений Панцхава

Биоэнергетика. Мир и Россия. Биогаз. Теория и практика. Монография - Евгений Панцхава

Читать онлайн Биоэнергетика. Мир и Россия. Биогаз. Теория и практика. Монография - Евгений Панцхава

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 15 16 17 18 19 20 21 22 23 ... 47
Перейти на страницу:

Все бензиновые автомобили Toyota и Lexus, которые не совместимы с E10 могут использовать бензин с 5 % этанола (E5).

DIESEL (по состоянию на июль 2010 г.) Все европейские дизельные модели Toyota и Lexus совместимы с B7 Европейского стандарта EN590: 2009.

Директива 2003/30/EC Европейского Парламента и Совета от 8 мая 2003 года о продвижении использования биотоплива и других возобновляемых видов топлива для транспорта. [3-52].

16/10/2007 Директива требует, чтобы государства члены приняли законодательство и необходимые меры для обеспечения того, чтобы биотопливо (жидкое или газообразное топливо, используемое для транспортировки и производимый из биомассы, то есть биологически разлагаемые отходы и остатки, например, сельское и лесное хозяйство) в минимальных долях от проданного топлива на своей территории использовалось.

В контексте устойчивого развития в Европе и в Зеленой книге "На пути к европейской стратегии энергетической безопасности", Комиссия предлагает подлинный план действий, направленный на увеличение доли биотоплива до более чем 20 % европейского бензина и дизельного топлива для потребление в 2020 году.

По прогнозам в Зеленой книге, транспортный сектор будет расти примерно на 2 % в год в течение ближайшего десятилетия. Тем не менее, более широкого использования биотоплива на транспорте является частью пакета мер, необходимых для соблюдения Киотского протокола.

Конечной целью является снизить зависимость от использования нефтяного топлива, которое является существенной причиной для беспокойства для Европейского Союза (ЕС) в отношении окружающей среды и безопасность поставок.

3.11. Термохимическая конверсия биомассы в топливо

Более подробно технологии переработки биомассы в топливо описаны в главе 4.

3.11.1. Прямое сжигание – древнейший, но наименее выгодный процесс с КПД получения тепловой энергии 15… 18 %.

3.11.2. Пиролиз термохимическая конверсия сырья без доступа воздуха при температуре 450…550 °C.

3.11.3. Газификация – сжигание биомассы при температуре 900… 1 500 °C в присутствии воздуха или кислорода и воды.

3.11.4. Сжижение – производство жидкого топлива из биомассы путем термической конверсии: термический пиролиз или газификация в присутствии катализаторов.

3.11.5. Быстрый пиролиз – биомасса в течение короткого времени подвергается воздействию экстремально высоких температур (700… 1 400 °C).,

3.11.6. Синтез – каталитический синтез метанола из газов, образующихся при термической конверсии биомассы.

3.12. Биотехнологии

К биотехнологиям относятся такие процессы, как: биогазовые технологии; производство этанола, бутанола, изобутанола; получение биодизельных топлив, жирных кислот, растительных углеводородов; производство биоводорода, получение тепловой энергии.

3.12.1. Биогазовые технологии. Биогаз – смесь метана и углекислого газа – продукт метанового брожения органических веществ растительного и животного происхождения

3.12.2. Производство этанола. Этанол, а также другие низшие спирты, альдегиды и кетоны – продукты спиртового брожения разнообразных сахаро- и крахмалосодержащих субстратов.

3.12.4. Биодизельное топливо имеет те же характеристики, что и обычные дизельные масла, которые могут использоваться в дизельных двигателях.

3.12.5. Получение тепловой энергии активным компостированием (микробное окисление). Использование этого метода для утилизации твердой биомассы и, прежде всего, твердых органических отходов также может внести существенный вклад в энергетику, в частности, в производство тепловой энергии.

Одна из особенностей решения этой проблемы в ХХI веке состоит в том, что энергопроизводство должно быть экологически чистым.

3.13. Вклад биомассы в мировое производство энергии

Таблица. 3-5

Прогноз роста скоростей вклада возобновляемых источников энергии в мировой энергетический баланс (%) [3–5]

Скорость прироста вклада биомассы в энергобаланс мира намного меньше, чем у других типов возобновляемых источников энергии. Но вклад биомассы в 2001 году составлял 1.1–1.2 млрд. тонн нефтяного эквивалента (н. э.) при общем вкладе всех ВИЭ – 1.36 млрд. тонн н. э. при общем производстве энергии в мире – 10 млрд. тонн н. э.

К 2040 году общее потребление энергии в мире прогнозируется на уровне 13.5 млрд. тонн н. э. (100 %), вклад всех ВИЭ к этому периоду – 47,7 % или 6.44 млрд. тонн н. э., тогда как вклад биомассы составит 23,8 % или 3.21 млрд. тонн н. э. [3–5].

В последние годы в опубликованных многочисленных глобальных энергетических сценариях была включена устойчивая роль возобновляемой энергетики для энергетической обеспеченности, и вклад биомассы для этих целей может составить:

от 59 до 145 х 1018дж к 2025 году и от 94 до 280 х 1018дж к 2050 г.

В 2003 году вклад биомассы в общий энергобаланс Европейского Союза (15 стран) составил 3,6 %, что несколько выше, чем все остальные возобновляемые источники энергии (3,4 %), но их доля различна: так, в Австрии она равна 12, в Швеции – 18, в Финляндии – 23 %.

К 2030 году этот вклад планируется увеличить до 19 % (27 стран ЕС). [3-53].

Таблица. 3-6

Рост вклада биомассы в общее потребление энергии в отдельных станах. [3–6]

Основные направления использования биомассы в целях энергетики Европейского Союза [7]:

1. Производство пеллет и древесной щепы (прямое сжигание).

2. Газификация и пиролиз («синтез»– газ или по- европейски – «син-газ»», метанол для транспорта).

3. Производство биоэтанола.

4. Производство биодизельного топлива.

6. Производство биоводорода.

7. Производство биогаза

Таблица. 3–7. Перспективы потребления биотоплив в Европе.

2000 – 0.9 млн. тонн нефт. экв./год

2005 – 5.0 «««

2010 – 17.0 «««

2020 – 37.0 «««

при стоимости 350–450 Евро за 1 тонну нефтяного эквивалента.

Большая часть накапливаемой биомассы, постепенно трансформируясь, главным образом, в результате сложных трофических (пищевых) связей, в конечном итоге окисляется до СО2. По законам сохранения энергии этот процесс сопровождается выделением энергии, которая рассеивается в окружающую среду.

Глобальные экологические тенденции подталкивают к более совершенным и безопасным для здоровья человека способам производства, к уменьшению отходов, к уменьшению загрязнений от транспорта, к сохранению естественных ландшафтов и лесов, к рассредоточенному производству энергии и сокращению эмиссии парниковых газов [3–8].

Важная роль в решении этих проблем отводится производству и использованию биотоплив.

В 2000 году мировой рынок биотоплив оценивался в сумме 866 миллионов долл. США. В 2004 году он составил 1.28 млрд долл. И к 2013 году – 2.14 млрд. долл. США.

Прогнозируется, что во втором десятилетии в производство биотоплив будет инвестировано около 18 млрд. долл.

В развивающихся странах биомасса является главным источником энергии для многих ремесленников и малых производств: хлебопечение, пивоварение, текстильная мануфактура, производства табака, кофе, чая, копченостей, кирпича и т. п. Например, в Азии около 20 % регионов используют дрова в сельскохозяйственном производстве и при переработке сельхозпродуктов [3–9]. Древесный уголь применяется при производстве железа, стали, цемента и т. д.

В Бразилии для тяжелой промышленности требуется ежегодно свыше 6 млн т древесного угля. Здесь для получения топлива и энергии эффективно используется багасса. Оценка энергетического потенциала остатков багассы после обеспечения всей энергии, необходимой для сахарного производства и получения этанола, составляет 6 000 МВт. В 1995 г. имелось 12 заводов мощностью 114,8 МВт по производству спирта, использующих багассу. Несмотря на очевидную выгодность ее энергетического использования, в Бразилии имеются проблемы, уменьшающие масштабы применения последней: ограничения на использование частного капитала для развития промышленного производства электроэнергии; длительные сроки окупаемости оборудования, применяющего багассу; сезонность потребления багассы и трудности ее хранения; сложности связывания национальных и региональных энергосетей в большинстве далеких сельских районов; низкие тарифы на электроэнергию и необходимость правительственных субсидий [3-10].

В Индии программа децентрализации производства энергии, инициированная в 1995 г., обеспечила поддержку проектов по производству энергии мощностью от 10 до 15 МВт в малых сельских общинах. Предусматривалось на период 1970–2000 гг. выполнить проекты установок общей мощностью 500 МВт. Проект включал в себя создание около 1 600 систем газификации мощностью 16 МВт главным образом для получения электроэнергии в сельской местности. Для Индии потенциальные возможности использования багассы оцениваются в пределах 2 800…5 100 МВт.

В Китае к 2010 г. планировалось создание станции мощностью 300 МВт по газификации багассы, соломы и опилок.

1 ... 15 16 17 18 19 20 21 22 23 ... 47
Перейти на страницу:
На этой странице вы можете бесплатно скачать Биоэнергетика. Мир и Россия. Биогаз. Теория и практика. Монография - Евгений Панцхава торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Вася
Вася 24.11.2024 - 19:04
Прекрасное описание анального секса
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит