Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Грин Брайан
Шрифт:
Интервал:
Закладка:
Эта глубокая связь между гравитацией и ускоренным движением, несомненно, представляет собой блестящую догадку, но почему она сделала Эйнштейна столь счастливым? Причина, попросту говоря, состоит в том, что гравитация — загадочное явление. Это грандиозная сила, пронизывающая жизнь космоса, но она ускользающе непонятна. С другой стороны, ускоренное движение, хотя и является несколько более сложным, чем равномерное, является конкретным и вполне материальным. Эйнштейн понял, что, благодаря взаимосвязи между этими явлениями, он может использовать понимание ускоренного движения в качестве могучего инструмента для достижения такого же понимания гравитации. Претворить эту стратегию в жизнь было нелегко даже для такого гения, как Эйнштейн, но, в конечном счёте, этот подход принёс свои плоды в виде общей теории относительности. Чтобы достичь этого, Эйнштейну пришлось выковать второе звено цепи, объединяющей гравитацию и ускоренное движение, — кривизнупространства и времени, — к обсуждению которой мы сейчас перейдём.
Ускорение и искривление пространства и времени
Эйнштейн работал над проблемой гравитации с предельной, часто чрезмерной интенсивностью. Примерно через пять лет после счастливого озарения в бернском патентном бюро, он писал физику Арнольду Зоммерфельду: «Сейчас я работаю исключительно над проблемой гравитации... одно могу сказать определённо — никогда в моей жизни я не изнурял себя так, как сейчас... по сравнению с этой проблемой первоначальная (т. е. специальная) теория относительности кажется детской забавой». {14}
Следующий ключевой прорыв, касающийся простого, но неочевидного следствия применения специальной теории относительности для установления связи между гравитацией и ускоренным движением, был сделан, по-видимому, в 1912 г. Чтобы понять этот шаг в исследованиях Эйнштейна, проще всего обратиться (так, вероятно, поступил и Эйнштейн) к конкретному примеру ускоренного движения. {15} Вспомним, что объект считается ускоренно движущимся, если он изменяет скорость или направление своего движения. Для простоты ограничимся ускоренным движением, в котором скорость остаётся постоянной, а изменяется только направление движения тела. Конкретно рассмотрим движение по кругу, которое можно увидеть на аттракционе «Верхом на торнадо». В этом аттракционе вы становитесь внутрь большого круга, по краю которого расположена стенка, изготовленная из плексигласа, прижимаетесь спиной к этой стенке, и круг начинает вращаться с большой скоростью. Как при всяком ускоренном движении (вы можете ощутить его), вы почувствуете, что ваше тело отбрасывается по радиусу от центра вращения, а круговая плексигласовая стенка вдавливается в вашу спину, не давая вам вылететь с круга. (На самом деле, хотя это не относится к нашему разговору, вращательное движение «прилепляет» ваше тело к плексигласу с такой силой, что когда планка, на которой вы стоите, уходит из-под ног, вы не падаете, а остаётесь прижатым к стенке.) Если движение плавное, и вы закроете глаза, давление, которое будет действовать на вашу спину в результате вращения, — совсем как давление со стороны матраса в постели — почти способно создать иллюзию, что вы лежите. Слово «почти» связано с тем фактом, что вы продолжаете испытывать действие обычной, «вертикальной» гравитации, которая не даёт вашему мозгу одурачить себя. Но если бы вам довелось кататься на этом аттракционе в открытом космосе, и если бы скорость вращения была соответствующей, вы бы почувствовали себя лежащим в обычной постели на Земле. Более того, если бы вы «встали» и попробовали бы прогуляться по внутренней поверхности вращающейся плексигласовой стенки, ваши ноги ощутили бы точно такое же давление, какое они испытывают на обычном полу. На самом деле, проекты космических станций предусматривают подобное вращение для создания искусственной силы тяжести в космическом пространстве.
Теперь, используя ускоренное движение во вращающемся аттракционе для имитации действия силы тяжести, можно, следуя Эйнштейну, посмотреть, как выглядят пространство и время для тех, кто находится на круге. Его рассуждения в приложении к нашей ситуации были бы такими. Мы, неподвижные наблюдатели, легко можем измерить длину окружности и радиус вращающегося круга. Например, чтобы измерить длину окружности, мы будем аккуратно прикладывать рулетку к ободу вращающегося круга; для измерения радиуса мы будем также аккуратно перемещать рулетку от оси вращения к внешнему краю круга. Как можно предположить, основываясь на школьном курсе геометрии, отношение эти двух величин будет равно 2 π(около 6,28), в точности таким же, как для окружности, нарисованной на плоском листе бумаги. А как это будет выглядеть с точки зрения того, кто катается на этом аттракционе?
Чтобы узнать это, мы попросили Слима и Джима, которые как раз катаются на этом аттракционе, выполнить для нас несколько измерений. Мы бросили одну из наших рулеток Слиму, который отправился измерять длину окружности, а другую — Джиму, который будет измерять радиус. Чтобы увидеть всё наилучшим образом, взглянем на круг с высоты птичьего полёта, как показано на рис. 3.1. Мы снабдили снимок стрелками, показывающими мгновенное направление движения в каждой точке. Как только Слим начинает измерять длину окружности, нам, из положения сверху, сразу становится понятно, что он получит не то значение, которое получили мы. Когда он прикладывает рулетку к окружности, мы замечаем, что её длина уменьшается. Это не что иное, как обсуждавшееся в главе 2 лоренцево сокращение, которое связано с тем, что длина тела представляется уменьшившейся в направлении его движения. Уменьшение длины рулетки означает, что мы должны будем уложить её, совмещая начало с концом, большеечисло раз, чтобы обойти весь круг. Так как Слим продолжает считать, что длина рулетки составляет один метр (поскольку между ним и его рулеткой нет относительного перемещения, он думает, что она имеет свою обычную длину в один метр), он измерит бо́льшуюдлину окружности, чем мы. (Если это кажется парадоксальным, вам может помочь примечание {16} .)
Рис. 3.1.Линейка Слима укорачивается, так как она прикладывается вдоль направления движения круга. Линейка же Джима лежит вдоль радиуса круга, перпендикулярно направлению движения, и поэтому её длина не уменьшается
Ну, а что насчёт радиуса? Джим использует тот же метод определения радиуса, и нам, с высоты птичьего полёта, видно, что он получит такое же значение, которое получили мы. Причина состоит в том, что его рулетка располагается не по мгновенному направлению движения круга (как было при измерении длины окружности). Она направлена под углом 90 градусов к направлению движения и поэтому не сокращаетсяв направлении своей длины. Следовательно, Джим получит точно такое же значение величины радиуса, какое получили мы.
Но теперь, рассчитав отношение длины окружности колеса к его радиусу, Слим и Джим получат число, которое будет превышать полученное нами значение 2 π, поскольку у них длина окружности оказалась больше, а радиус остался тем же самым. Что за чудеса? Как может быть, чтобы для какой-нибудь фигуры в форме окружности нарушалось установленное ещё древними греками правило, согласно которому для любой окружности это отношение в точности равно 2 π?
Вот объяснение Эйнштейна. Результат древних греков справедлив для окружностей, нарисованных на плоской поверхности. Но подобно тому, как кривые зеркала в парке развлечений искажают нормальную пространственную структуру вашего отражения, так и пространственная форма окружности исказится, если она будет нарисована на искривлённой или деформированной поверхности: отношение длины окружности к радиусу для такой окружности, как правило, не будетравно 2 π.