Истинный творец всего. Как человеческий мозг сформировал вселенную в том виде, в котором мы ее воспринимаем - Николелис Мигель
Шрифт:
Интервал:
Закладка:
Рис. 4.2. Первая конфигурация инфракрасного нейропротеза, использованного Эриком Томсоном в экспериментах в нашей лаборатории. А: Схема камеры, в которой фиксировалось поведение крыс при решении задач на дискриминацию инфракрасного (IR) света. На внутренней поверхности большого (60 см) цилиндра симметрично установлены четыре порта с отверстиями для носа, источником IR и видимого света. B: Топографическое расположение четырех имплантатов в первичной соматосенсорной коре мозга крысы (S1), проводящих электрические сигналы от четырех детекторов IR. Сенсоры IR расположены под прямым углом по отношению друг к другу, каждый совмещен со своей парой стимулирующих электродов в S1. C: Частота стимуляции зависит от интенсивности IR в каждом сенсоре. Интенсивность каждого IR луча конвертируется в реальном времени в сигнал с разной частотой стимуляции в соответствующем канале. D: График в полярных координатах, отражающий ответ каждого сенсора IR в зависимости от угла, когда сенсорная антенна находится в фиксированной позиции по отношению к единственному активированному источнику IR. Точка на окружности (вверху справа) указывает относительное расположение источника IR. E: Профиль ответа, выраженного как полная ширина на половине высоты (FWHM), в зависимости от положения в камере. Черная точка соответствует положению активного источника IR, а FWHM – среднее значение FWHM для всех четырех сенсоров в данном положении (см. D). Если удаляться от источника или перемещаться вбок, профиль ответа сужается. Черная точка обозначает ситуацию, представленную на рисунке D. Hartmann K. et al. Embedding a Novel Representation of Infrared Light in the Adult Rat Somatosensory Cortex through a Sensory Neuroprosthesis. Journal of Neuroscience 36, no. 8, February 2016: 2406–24.
Мы начали эксперимент с того, что стали обучать крыс следить за пучком видимого света, подводившего их к лакомству. Когда они научились решать эту базовую задачу, мы подключили инфракрасные сенсоры Эрика, чтобы понять, смогут ли они находить угощение, фиксируя и отслеживая пучок инфракрасного излучения путем прикосновения. Для этого Эрик установил на внутренней поверхности круглой камеры, где во время эксперимента находились «киберкрысы», источники инфракрасного излучения в позициях 0, 90, 180 и 2700. Положение излучателей позволяло нам выборочным образом изменять источник луча во время эксперимента, чтобы мы могли быть уверены в том, что крысы находят угощение не с помощью обычных органов чувств. Поначалу мы встраивали крысам лишь один сенсор инфракрасного излучения. Животным потребовалось около четырех недель, чтобы научиться успешно «дотрагиваться» до инфракрасного луча и следовать вдоль него в поисках лакомства более чем в 90 % экспериментов.
В первых экспериментах наши «киберкрысы» демонстрировали очень интересные особенности поведения: поначалу они крутили головой в горизонтальной плоскости, как будто сканировали пространство вокруг себя в поисках сигнала; при появлении инфракрасного луча крысы всегда терли мордочку передними лапами, прежде чем начинали следовать за лучом в сторону конкретного излучателя. Хотя первое наблюдение показало, что крысы разработали собственную стратегию для обнаружения первых признаков появления инфракрасного луча, второе говорило скорее о том, что они чувствовали инфракрасное излучение, как будто их усики касались чего-то во внешнем пространстве. Однако на деле они ни до чего не дотрагивались. Это мозг крыс обучался обрабатывать поступающий сигнал инфракрасного света в качестве некоего действующего на усики тактильного стимула!
Хотя эти результаты уже были весьма обнадеживающими, самый большой сюрприз ждал нас чуть позже, когда Эрик начал анализировать записи электрической активности отдельных нейронов в соматосенсорной коре мозга наших крыс, следивших за инфракрасным излучением. Значительная доля их нейронов, которые раньше возбуждались только тогда, когда животные касались чего-либо усиками, теперь приобрели способность реагировать на присутствие в окружающей среде инфракрасного излучения (рис. 4.3).
Рис. 4.3. Отдельные нейроны соматосенсорной коры (S1, A) отвечают и на механическую стимуляцию усиков на мордочке животного (верхняя полоса, B), и на IR-излучение в случае крыс с имплантированным нейропротезом (нижняя полоса, C), передающим электрический стимул на первичную соматосенсорную кору (S1). Верхняя полоса, A: Уплощенные срезы коры в S1 полушариях мозга одного животного демонстрируют расположение электродов. Звездочки указывают места вживления электродов. B: Очень стойкие ответы для 15 нейронов S1 у того же животного, вызванные сенсорным стимулом и сопровождающиеся механическими отклонениями усиков, проявляются в виде четких пиков электрической активности нейронов на перистимулярных временных гистограммах (PSTH). Такой тактильный ответ нейронов был получен после обучения животных распознанию IR-сигналов. Ширина столбика гистограммы PSTH – 1 мс. C: PSTH описывает электрический ответ нейронов S1 на сигналы IR-стимуляции. Стрелки указывают на расположение нейронов в коре S1. Правый график отражает z-значение для потенциалов действия как функцию числа активированных стимулирующих каналов. Это типичная картина, при которой максимальный ответ наблюдается при одновременной активации двух каналов. C модификациями из работы: Hartmann K. et al. Embedding a Novel Representation of Infrared Light in the Adult Rat Somatosensory Cortex through a Sensory Neuroprosthesis. Journal of Neuroscience 36, no. 8, February 2016: 2406–24.
В следующем эксперименте мы использовали четыре сенсора инфракрасного излучения, позволявшие получать панорамное изображение цилиндра. В этой серии экспериментов для освоения такой же задачи крысам потребовалось всего три дня, а не четыре недели. Контрольные эксперименты показали, что даже при изменении картины пространственного взаимодействия между выходами инфракрасных сенсоров и различными подобластями соматосенсорной коры мозга крысы быстро переучивались отслеживать инфракрасные лучи и успешно находить с их помощью лакомство более чем в 90 % случаев.
В целом эти две группы экспериментов четко подтвердили возможность приобретения крысами нового тактильного ощущения. Примечательно, что это происходило не за счет уже существовавшего репертуара возможностей: к лету 2016 года Эрик показал, что ни одна из крыс, способных распознавать инфракрасное излучение, не утратила способности использовать усики для выполнения стандартных задач по тактильной дискриминации, которые они выполняют с таким мастерством. Иными словами, участок коры, который ранее занимался исключительно обработкой одного важнейшего типа сигнала (в данном случае тактильной информации), превратился в мультифункциональный участок мозга, хотя за долгую эволюционную историю этого живучего вида ни одна крыса никогда не ориентировалась на сигналы такого рода. В целом можно сказать, что благодаря использованию сенсорных нейропротезов головной мозг наших модифицированных крыс получил способность создавать новые изображения окружающего мира на основании инфракрасных сигналов в дополнение к уже существующему тактильному представлению.
Как и результаты проекта «Снова ходить», наши эксперименты с крысами и инфракрасным излучением представляют собой весьма значимый новый этап в серии научных достижений в сфере выявления и характеризации ключевых функциональных принципов, определяющих работу человеческого мозга.
Такое увлечение нейронными сетями головного мозга восходит к истокам современной нейробиологии. Основателем этого направления можно считать гениального британского ученого XIX века Томаса Юнга – настоящего человека эпохи Возрождения, который, среди прочих своих достижений, провел ставший ныне классическим эксперимент с двумя щелями, показавший волновую природу света. Юнг сделал несколько открытий в области нейробиологии еще до того, как данная сфера науки получила свое название. Одним из его достижений в этой области было предложение трихроматической гипотезы для объяснения цветного зрения: Юнг утверждал, что сетчатка человеческого глаза может кодировать любой цвет с помощью лишь трех типов цветовых рецепторов, ответственных за восприятие света в частично перекрывающихся участках спектра. Согласно теории Юнга, это возможно благодаря соответствию профиля ответа каждого из этих трех типов рецепторов сетчатки колоколообразным зависимостям с максимумами в разных областях спектра (где их реакция на конкретный цвет максимальная) и тому, что все они частично перекрываются между собой (рис. 4.4). Это последнее замечание означает, что каждый рецептор отвечает также и на многие другие цвета, но в меньшей степени. Время показало, что Юнг был абсолютно прав, хоть и выдвинул все эти гипотезы, даже не дотрагиваясь до сетчатки глаза, чтобы провести ее гистологический анализ.