Категории
Самые читаемые
RUSBOOK.SU » Научные и научно-популярные книги » Физика » 2a. Пространство. Время. Движение - Ричард Фейнман

2a. Пространство. Время. Движение - Ричард Фейнман

Читать онлайн 2a. Пространство. Время. Движение - Ричард Фейнман

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 9 10 11 12 13 14 15 16 17 18
Перейти на страницу:

Надо сказать, что математический анализ вообще не такое уж могучее средство исследования; с его помощью можно ре­шить лишь простейшие возможные уравнения. Как только урав­нение чуть усложняется, его уже нельзя решить аналитически. Численный же метод, с которым мы познакомились в начале курса, позволяет решить любое уравнение, представляющее физический интерес.

Пойдем дальше. Что можно сказать о резонансной кривой? Как объяснить резонанс? Представим сначала, что трения нет и мы имеем дело с чем-то, что может колебаться само по себе. Если подталкивать маятник каждый раз, когда он пройдет мимо нас, то очень скоро маятник начнет раскачиваться, как сумас­шедший. А что случится, если мы закроем глаза и, не следя за маятником, начнем толкать его с произвольной частотой, с ка­кой захотим? Иногда наши толчки, попадая не в ритм, будут замедлять маятник. Но когда нам посчастливится найти вер­ный темп, каждый толчок будет достигать маятника в нужный момент и он будет подниматься все выше, выше и выше. Таким образом, если не будет трения, то для зависимости амплитуды от частоты внешней силы мы получим кривую, которая выгля­дит, как сплошная линия на фиг. 25.5.

Фиг. 25.5. Резонансная кривая, отражающая разнообразные виды трения.

Качественно мы по­няли резонансную кривую; чтобы найти ее точные очертания, пожалуй, придется прибегнуть к помощи математики. Кривая стремится к бесконечности, если w®w0, где w0— собственная частота осциллятора.

Предположите, что существует слабое трение. Тогда при не­значительных отклонениях осциллятора влияние трения сказы­вается слабо и резонансная кривая вдали от максимума не из­меняется. Однако около резонанса кривая уже не уходит в бесконечность, а просто поднимается выше, чем в остальных ме­стах. Когда амплитуда колебаний достигает максимума, работа, совершенная нами в момент толчка, полностью компенсирует потери энергии на трение за период. Таким образом, вершина кривой закруглена, и она уже не уходит в бесконечность. Чем больше трение, тем больше сглажена вершина кривой. Кто-нибудь может сказать: «Я думал, что ширины резонансных кривых зависят от трения». Так можно подумать, потому что ре­зонансные кривые рисуют, принимая за единицу масштаба вер­шину кривой. Однако если нарисовать все кривые в одном мас­штабе (это прояснит дело больше, чем изучение математических выражений), то окажется, что трение срезает вершину кривой! Если трение мало, мы можем подняться высоко по резонансной кривой; когда трение сгладит кривую, мы на том же интервале частот поднимаемся на меньшую высоту, и это создает ощу­щение ширины. Таким образом, чем выше пик кривой, тем ближе к максимуму точки, где высота кривой равна половине максимума.

Наконец, подумаем, что произойдет при очень большом тре­нии. Ясно, что, если трение очень велико, система вообще не осциллирует. Энергии пружинки едва-едва хватит на борьбу с силами трения, и грузик будет медленно ползти к положению равновесия.

§ 4. Аналогии в физике

Продолжая обзор, заметим, что массы и пружинки — это не единственные линейные системы; есть и другие. В частности, существуют электрические системы (их называют линейными цепями), полностью аналогичные механическим системам. Мы не старались до конца выяснить, почему каждая часть электри­ческой цепи работает так, а не иначе; это нам еще трудно по­нять. Можно просто поверить, что то или иное поведение каж­дого элемента цепи можно подтвердить экспериментально.

Возьмем для примера простейшее устройство. Приложим к куску проволоки (сопротивлению) разность потенциалов V. Это значит, что если от одного конца проволоки до другого проходит заряд q, то при этом совершается работа qV. Чем вы­ше разность потенциалов, тем большая работа совершается при «падении» заряда с высокопотенциального конца проволоки на низкопотенциальный. Заряды, проходя с одного конца прово­локи на другой, выделяют энергию. Но зарядам не так-то просто плыть вдоль проволоки: атомы проволоки оказывают сопротивление потоку, и это сопротивление подчиняется закону, справедливому почти для всех обычных материалов: ток I про­порционален приложенной к проволоке разности потенциалов. Иначе говоря, число зарядов, проходящих через проволоку за 1 сек, пропорционально силе, с которой их толкают:

V=IR=R(dq/dt), (25.11)

Коэффициент R называют сопротивлением, а само уравнение— законом Ома. Единица сопротивления — ом; он равен отноше­нию одного вольта (1 в) к одному амперу (1 а). В механических устройствах очень трудно отыскать силу трения, пропорцио­нальную скорости, а в электрических цепях — это дело обычное и закон Ома справедлив для большинства металлов с очень высокой точностью.

Нас интересует, много ли совершается работы за 1 сек при прохождении зарядов по проволоке (эту же величину можно назвать потерей мощности или выделяемой зарядами энергией)? Чтобы прогнать заряд q через разность потенциалов V, надо со­вершить работу qV; таким образом, работа за 1 сек равна V(dq/dt), или VI. Это выражение можно записать иначе: IR·I=I2R. Эту величину называют тепловыми потерями; вследствие закона сохранения энергии, такое количество теплоты про­изводит в 1 сек сопротивление проволоки. Эта теплота накаляет проволоку электрической лампы.

У механических устройств есть, конечно, и другие интересные свойства, например, такие, как масса (инерция). В электриче­ских цепях, оказывается, тоже существуют аналоги инерции. Можно построить прибор, называемый индуктором, а свойство, которым он обладает, носит название индуктивность. Ток, попа­дающий в такой прибор, не хочет останавливаться. Чтобы изме­нить ток, к этому прибору нужно приложить разность потенци­алов. Если по прибору течет постоянный ток, то падения по­тенциалов нет. Цепи с постоянным током ничего «не знают» об индуктивности; эффекты индуктивности обнаруживаются толь­ко при изменениях тока. Описывающее эти эффекты уравнение гласит;

V=L(dI/dt)=L(d2q/dt2), (25.12)

а индуктивность измеряется в единицах, которые называются генри (гн). Приложенная к прибору с индуктивностью в 1 гн разность потенциалов в 1 в изменяет ток на 1 а/сек. Уравнение (25.12), если хотите,— электрический аналог закона Ньютона: V соответствует F, L соответствует т, а I — скорости!

Все последующие уравнения, описывающие обе системы, выводятся одинаково, потому что мы просто можем заменить буквы в уравнении для одной системы и получить уравнение для другой системы; любой вывод, сделанный при изучении од­ной системы, будет верен и для другой системы.

Какое электрическое устройство соответствует пружинке, в которой сила пропорциональна растяжению? Если начать с F=kx и заменить F на V, a х на q, тополучим V=aq.Мы уже знаем, что такое устройство существует; более того, это единственный из трех элементов цепи, работу которого мы понимаем. Мы уже знакомились с парой параллельных пластинок и обнаружили, что если зарядить пластинки равными, но противоположными по знаку зарядами, то поле между пластинками будет про­порционально величине заряда. Работа, совершаемая при пе­реносе единичного заряда через щель от одной пластинки к дру­гой, прямо пропорциональна заряду пластинок. Эта работа слу­жит определением разности потенциалов и равна линейному ин­тегралу электрического поля от одной пластинки к другой. По исторически сложившимся причинам постоянную пропор­циональности называют не С, а 1/С, т. е.

V=q/C. (25.13)

Единица емкости называется фарадой (ф); заряд в 1 кулон, по­мещенный на каждой пластинке конденсатора емкостью в 1 ф, создает разность потенциалов в 1 в. Вот все нужные аналогии. Теперь можно, заменив m на L, q на х и т. д., написать уравне­ние для резонансной цепи

Все, что мы знаем об уравнении (25.14), можно применить и к уравнению (25.15). Переносится каждое следствие; анало­гов так много, что с их помощью можно сделать замечательные вещи.

Предположим, что мы натолкнулись на очень сложную механическую систему: имеется не одна масса на пружинке, а много масс на многих пружинках, и все это перепутано. Что нам делать? Решать уравнения? Можно и так. Но попробуем соб­рать электрическую цепь, которая будет описываться теми же уравнениями, что и механическое устройство! Если мы собрались анализировать движение массы на пружинке, почему бы нам не собрать цепь, в которой индуктивность пропорциональна массе, сопротивление пропорционально тg, 1/С пропорциональ­но k? Тогда электрическая цепь, конечно, будет точным анало­гом механического устройства в том смысле, что любой отклик q на V (V соответствует действующей силе) в точности соответст­вует отклику х на силу! Перепутав в цепи великое множество сопротивлений, индуктивностей и емкостей, можно получить цепь, имитирующую сложнейшую механическую систему. Что в этом хорошего? Каждая задача, механическая или электриче­ская, столь же трудна (или легка), как и другая: ведь они в точ­ности эквивалентны. Открытие электричества не помогло решить математические уравнения, но дело в том, что всегда легче собрать электрическую цепь и изменять ее параметры.

1 ... 9 10 11 12 13 14 15 16 17 18
Перейти на страницу:
На этой странице вы можете бесплатно скачать 2a. Пространство. Время. Движение - Ричард Фейнман торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Вася
Вася 24.11.2024 - 19:04
Прекрасное описание анального секса
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит