2a. Пространство. Время. Движение - Ричард Фейнман
Шрифт:
Интервал:
Закладка:
Надо сказать, что математический анализ вообще не такое уж могучее средство исследования; с его помощью можно решить лишь простейшие возможные уравнения. Как только уравнение чуть усложняется, его уже нельзя решить аналитически. Численный же метод, с которым мы познакомились в начале курса, позволяет решить любое уравнение, представляющее физический интерес.
Пойдем дальше. Что можно сказать о резонансной кривой? Как объяснить резонанс? Представим сначала, что трения нет и мы имеем дело с чем-то, что может колебаться само по себе. Если подталкивать маятник каждый раз, когда он пройдет мимо нас, то очень скоро маятник начнет раскачиваться, как сумасшедший. А что случится, если мы закроем глаза и, не следя за маятником, начнем толкать его с произвольной частотой, с какой захотим? Иногда наши толчки, попадая не в ритм, будут замедлять маятник. Но когда нам посчастливится найти верный темп, каждый толчок будет достигать маятника в нужный момент и он будет подниматься все выше, выше и выше. Таким образом, если не будет трения, то для зависимости амплитуды от частоты внешней силы мы получим кривую, которая выглядит, как сплошная линия на фиг. 25.5.
Фиг. 25.5. Резонансная кривая, отражающая разнообразные виды трения.
Качественно мы поняли резонансную кривую; чтобы найти ее точные очертания, пожалуй, придется прибегнуть к помощи математики. Кривая стремится к бесконечности, если w®w0, где w0— собственная частота осциллятора.
Предположите, что существует слабое трение. Тогда при незначительных отклонениях осциллятора влияние трения сказывается слабо и резонансная кривая вдали от максимума не изменяется. Однако около резонанса кривая уже не уходит в бесконечность, а просто поднимается выше, чем в остальных местах. Когда амплитуда колебаний достигает максимума, работа, совершенная нами в момент толчка, полностью компенсирует потери энергии на трение за период. Таким образом, вершина кривой закруглена, и она уже не уходит в бесконечность. Чем больше трение, тем больше сглажена вершина кривой. Кто-нибудь может сказать: «Я думал, что ширины резонансных кривых зависят от трения». Так можно подумать, потому что резонансные кривые рисуют, принимая за единицу масштаба вершину кривой. Однако если нарисовать все кривые в одном масштабе (это прояснит дело больше, чем изучение математических выражений), то окажется, что трение срезает вершину кривой! Если трение мало, мы можем подняться высоко по резонансной кривой; когда трение сгладит кривую, мы на том же интервале частот поднимаемся на меньшую высоту, и это создает ощущение ширины. Таким образом, чем выше пик кривой, тем ближе к максимуму точки, где высота кривой равна половине максимума.
Наконец, подумаем, что произойдет при очень большом трении. Ясно, что, если трение очень велико, система вообще не осциллирует. Энергии пружинки едва-едва хватит на борьбу с силами трения, и грузик будет медленно ползти к положению равновесия.
§ 4. Аналогии в физике
Продолжая обзор, заметим, что массы и пружинки — это не единственные линейные системы; есть и другие. В частности, существуют электрические системы (их называют линейными цепями), полностью аналогичные механическим системам. Мы не старались до конца выяснить, почему каждая часть электрической цепи работает так, а не иначе; это нам еще трудно понять. Можно просто поверить, что то или иное поведение каждого элемента цепи можно подтвердить экспериментально.
Возьмем для примера простейшее устройство. Приложим к куску проволоки (сопротивлению) разность потенциалов V. Это значит, что если от одного конца проволоки до другого проходит заряд q, то при этом совершается работа qV. Чем выше разность потенциалов, тем большая работа совершается при «падении» заряда с высокопотенциального конца проволоки на низкопотенциальный. Заряды, проходя с одного конца проволоки на другой, выделяют энергию. Но зарядам не так-то просто плыть вдоль проволоки: атомы проволоки оказывают сопротивление потоку, и это сопротивление подчиняется закону, справедливому почти для всех обычных материалов: ток I пропорционален приложенной к проволоке разности потенциалов. Иначе говоря, число зарядов, проходящих через проволоку за 1 сек, пропорционально силе, с которой их толкают:
V=IR=R(dq/dt), (25.11)
Коэффициент R называют сопротивлением, а само уравнение— законом Ома. Единица сопротивления — ом; он равен отношению одного вольта (1 в) к одному амперу (1 а). В механических устройствах очень трудно отыскать силу трения, пропорциональную скорости, а в электрических цепях — это дело обычное и закон Ома справедлив для большинства металлов с очень высокой точностью.
Нас интересует, много ли совершается работы за 1 сек при прохождении зарядов по проволоке (эту же величину можно назвать потерей мощности или выделяемой зарядами энергией)? Чтобы прогнать заряд q через разность потенциалов V, надо совершить работу qV; таким образом, работа за 1 сек равна V(dq/dt), или VI. Это выражение можно записать иначе: IR·I=I2R. Эту величину называют тепловыми потерями; вследствие закона сохранения энергии, такое количество теплоты производит в 1 сек сопротивление проволоки. Эта теплота накаляет проволоку электрической лампы.
У механических устройств есть, конечно, и другие интересные свойства, например, такие, как масса (инерция). В электрических цепях, оказывается, тоже существуют аналоги инерции. Можно построить прибор, называемый индуктором, а свойство, которым он обладает, носит название индуктивность. Ток, попадающий в такой прибор, не хочет останавливаться. Чтобы изменить ток, к этому прибору нужно приложить разность потенциалов. Если по прибору течет постоянный ток, то падения потенциалов нет. Цепи с постоянным током ничего «не знают» об индуктивности; эффекты индуктивности обнаруживаются только при изменениях тока. Описывающее эти эффекты уравнение гласит;
V=L(dI/dt)=L(d2q/dt2), (25.12)
а индуктивность измеряется в единицах, которые называются генри (гн). Приложенная к прибору с индуктивностью в 1 гн разность потенциалов в 1 в изменяет ток на 1 а/сек. Уравнение (25.12), если хотите,— электрический аналог закона Ньютона: V соответствует F, L соответствует т, а I — скорости!
Все последующие уравнения, описывающие обе системы, выводятся одинаково, потому что мы просто можем заменить буквы в уравнении для одной системы и получить уравнение для другой системы; любой вывод, сделанный при изучении одной системы, будет верен и для другой системы.
Какое электрическое устройство соответствует пружинке, в которой сила пропорциональна растяжению? Если начать с F=kx и заменить F на V, a х на q, тополучим V=aq.Мы уже знаем, что такое устройство существует; более того, это единственный из трех элементов цепи, работу которого мы понимаем. Мы уже знакомились с парой параллельных пластинок и обнаружили, что если зарядить пластинки равными, но противоположными по знаку зарядами, то поле между пластинками будет пропорционально величине заряда. Работа, совершаемая при переносе единичного заряда через щель от одной пластинки к другой, прямо пропорциональна заряду пластинок. Эта работа служит определением разности потенциалов и равна линейному интегралу электрического поля от одной пластинки к другой. По исторически сложившимся причинам постоянную пропорциональности называют не С, а 1/С, т. е.
V=q/C. (25.13)
Единица емкости называется фарадой (ф); заряд в 1 кулон, помещенный на каждой пластинке конденсатора емкостью в 1 ф, создает разность потенциалов в 1 в. Вот все нужные аналогии. Теперь можно, заменив m на L, q на х и т. д., написать уравнение для резонансной цепи
Все, что мы знаем об уравнении (25.14), можно применить и к уравнению (25.15). Переносится каждое следствие; аналогов так много, что с их помощью можно сделать замечательные вещи.
Предположим, что мы натолкнулись на очень сложную механическую систему: имеется не одна масса на пружинке, а много масс на многих пружинках, и все это перепутано. Что нам делать? Решать уравнения? Можно и так. Но попробуем собрать электрическую цепь, которая будет описываться теми же уравнениями, что и механическое устройство! Если мы собрались анализировать движение массы на пружинке, почему бы нам не собрать цепь, в которой индуктивность пропорциональна массе, сопротивление пропорционально тg, 1/С пропорционально k? Тогда электрическая цепь, конечно, будет точным аналогом механического устройства в том смысле, что любой отклик q на V (V соответствует действующей силе) в точности соответствует отклику х на силу! Перепутав в цепи великое множество сопротивлений, индуктивностей и емкостей, можно получить цепь, имитирующую сложнейшую механическую систему. Что в этом хорошего? Каждая задача, механическая или электрическая, столь же трудна (или легка), как и другая: ведь они в точности эквивалентны. Открытие электричества не помогло решить математические уравнения, но дело в том, что всегда легче собрать электрическую цепь и изменять ее параметры.