2a. Пространство. Время. Движение - Ричард Фейнман
Шрифт:
Интервал:
Закладка:
Фиг. 24.4. Колебания затухают быстрее.
Если еще увеличить сопротивление, то колебания затухнут еще быстрее (фиг. 24.5).
Фиг, 24.5. Колебания почти исчезли.
Но если сопротивление увеличить сверх некоторого предела, колебаний мы вообще не увидим. А может быть, нам просто отказывают глаза? Увеличим еще сопротивление и получим тогда кривую, представленную на фиг. 24.6; по ней можно лишь с натяжкой сказать, что в цепи произошли колебания, ну разве что одно.
Фиг. 24.6. Колебаний нет.
Можем ли мы математически объяснить это явление?
Сопротивление механического осциллятора, конечно, пропорционально g. В нашем случае g— это R/L. Теперь, если увеличивать g, то в столь приятных нам решениях (24.14) и (24.15) наступает беспорядок; когда g/2 становится больше w0, решения приходится записывать по-другому:
Это снова два решения, которые приводят нас к решениям exp(ia1t) и ехр(ia2t). Подставив теперь a1, получим
Никаких колебаний. Чисто экспоненциальное убывание. То же самое дает и второе решение
Заметим, что квадратный корень не может превысить g/2; даже если w0=0, оба члена равны. Если же w20 отличается от g/2/4, то квадратный корень меньше g//2 и выражение в круглых скобках всегда положительно. Это очень хорошо! Почему? Да потому что если бы это выражение было отрицательным, то е пришлось бы возводить в положительную степень и мы получили бы возрастающее со временем решение. Но при увеличении в цепи сопротивления колебания не могут возрастать, значит, мы избегли противоречия. Итак, мы получили два решения; оба решения экспоненциально затухают, но одно из них стремится «умереть» гораздо скорее. Общее решение, конечно, представляет собой комбинацию обоих решений, а значения коэффициентов А и В зависят от того, как начинаются колебания, каковы начальные условия. В нашей цепи случилось так, что А — отрицательное число, а В — положительное, поэтому на экране осциллоскопа мы увидели разность двух экспонент.
Давайте обсудим, как найти коэффициенты А и В (или А и A*), если известны начальные условия. Предположим, что в момент t=0 нам известны смещение х=х0и скорость dx/dt=v0. Если в соотношения
подставить значения t=0, х=х0, dx/dt=v0и воспользоваться тем, что е0=еi0=1, то мы получим
x0=A+A*=2AR,
Значит,
Таким образом, зная начальные условия, мы полностью определили А и А*, а значит, и кривую переходного решения. Можно записать решение и по-другому. Вспомним, что
eiq+e-iq=2cosq и eiq- e-iq=2isinq, тогда
где wg=+Ц(w20-(g2/4). Мы получили формулу затухающих колебаний. Такая формула нам не понадобится, однако отметим ее особенности, справедливые и в более общих случаях.
Прежде всего поведение системы, на которую не действует внешняя сила, описывается суммой (суперпозицией) временных экспонент [мы записали их в виде exp(iat)]. Такое решение хорошо передает истинное положение вещей. В общем случае a — это комплексное число, и его мнимая часть соответствует затуханию колебаний. Наконец, тесная математическая связь синусоидальных и экспоненциальных функций, о которой говорилось в гл. 22, физически часто проявляется в переходе от колебаний к чисто экспоненциальному затуханию при критических значениях некоторых параметров системы (в нашем случае это было сопротивление g).
Глава 25
ЛИНЕЙНЫЕ СИСТЕМЫ И ОБЗОР
§ 1. Линейные дифференциальные уравнения
§ 2. Суперпозиция решений
§ 3. Колебания в линейных системах
§ 4. Аналогии в физике
§ 5. Последовательные и параллельные сопротивления
§ 1. Линейные дифференциальные уравнения
В этой главе мы снова вернемся к некоторым аспектам наших колебательных систем, только постараемся теперь увидеть нечто более общее, стоящее за спиной каждой частной системы. Изучение каждой колебательной системы сводилось к решению дифференциального уравнения
Эта комбинация «операций» над переменной х обладает интересным свойством: если вместо х подставить (х+у), получится сумма одинаковых операций над х и y, а умножение х на число а сводится к умножению на это число первоначальной комбинации. Это легко доказать. Чтобы не переутомиться, записывая все буквы, вошедшие в (25.1), давайте введем «скорописные» обозначения. Обозначим всю левую часть уравнения (25.1) символом L(х). Увидев такой символ, вы должны мысленно представить себе левую часть уравнения (25.1). Поэтому, согласно этой системе, символ L(x+y) будет означать следующее:
(Подчеркнем букву L, чтобы не спутать этот символ с обычной функцией.) Иногда мы будем употреблять термин операторная запись, но совершенно безразлично, какими словами это называть, просто-напросто это «скоропись». Наше первое утверждение, что
L(x+y)=L(x)+L(y), (25.3)
следует из соотношений а(х+у)=ах+ау, d(x+y)/dt=dx/dt+-dy/dt и т. д.
Легко доказать, что для постоянного а
L(ax)=aL(x). (25.4)
[Соотношения (25.3) и (25.4) тесно связаны одно с другим, потому что, подставив в (25.3) х+х, мы получим (25.4) для частного значения а=2 и т. д.]
Решая более сложные задачи, можно получить L, в котором содержится больше членов и более высокие производные. Обычно первым делом интересуются, справедливы ли соотношения (25.3) и (25.4). Если они выполняются, то задачу называют линейной. В этой главе мы изучим некоторые свойства систем, следующие только из того факта, что система линейная. Это поможет нам понять общность некоторых свойств изученных ранее частных систем.
Давайте изучим некоторые свойства линейных дифференциальных уравнений, причем полезно помнить о хорошо знакомом нам частном уравнении (25.1). Первое интересное свойство: предположим, что мы решаем дифференциальное уравнение для переходных движений: свободных колебаний без действия внешних сил. Нам предстоит решить уравнение
L(x)=0. (25.5)
Предположим, что мы как-то исхитрились одолеть это уравнение и нашли его частное решение х1. Это значит, что нам известна функция x1, для которой L(x1)=0. После этого можно заметить, что ax1— тоже решение нашего уравнения; можно умножить частное решение уравнения на любую постоянную и получить новое решение. Иначе говоря, если какое-либо решение позволяет частице продвинуться на определенное расстояние, то она может совершить и более длинный рейс. Доказательство: L(ax1)=aL(x1)=a·0=0.
Предположим теперь, что нам удалось все-таки найти не одно частное решение x1, но и второе х2(напомним, что когда мы в поисках переходного решения подставляли x=exp(iat), то мы нашли два значения a, т. е. два решения: x1и х2). Покажем теперь, что комбинация x1+x2 — тоже решение. Иными словами, если положить x=x1+x2, то х — это опять решение уравнения. Почему? Потому что если L(x1)=0 и L(x2)=0, то L(xt+x2)=L(x1)+L(x2)=0+0=0. Таким образом, мы вправе складывать отдельные решения, описывающие движения линейной системы.
Продолжая в том же духе, мы можем сложить шесть первых и два вторых решения; ведь если x1есть решение, то ax1 — тоже решение. Другими словами, любая сумма двух решений, например ax1+bx2, удовлетворяет уравнению. Если нам посчастливится найти три решения, то мы увидим, что любая комбинация трех решений снова удовлетворяет уравнению, и т. д. Поток таких решений можно ограничить независимыми решениями; в случае осциллятора мы получили только два таких решения. Число независимых решений в общем случае зависит от того, что называется числом степеней свободы. Мы не будем сейчас подробно обсуждать этот вопрос, но в случае дифференциального уравнения второго порядка имеются лишь два независимых решения. Если мы найдем оба эти решения, то можно построить общее решение уравнения.