100 великих научных достижений России - Виорель Ломов
Шрифт:
Интервал:
Закладка:
Теоретические выкладки подкреплялись блестящими экспериментами, показывающими, что индукционный ток всегда противодействует изменению, порождающему его. С тех пор правило Ленца, предписывая направление движения индукционного тока, действует в электромагнитной индукции, как правила уличного движения на городских улицах.
Выводя свое правило, Ленц впервые обосновал и справедливость закона сохранения и превращения энергии при взаимных превращениях механической и электромагнитной энергии. Перемещая магнит или проводник с током вблизи замкнутого проводника, ученый показал, что механическая энергия этого перемещения превращается в электромагнитную энергию тока индукции. «Работа перемещения первого проводника превращается в электрическую энергию во втором проводнике», – заметил физик. Закон сохранения и превращения энергии в его современном виде был открыт лишь через восемь лет после доклада Ленца немецким физиком Р. Майером.
Работы Ленца в этом направлении позволили ему впервые сформулировать в 1833 г. фундаментальный принцип обратимости электрических машин. Экспериментально доказав обратимость генераторного и двигательного режимов электрических машин, физик совершил настоящий переворот в развитии электротехники.
Не менее значительны исследования Ленцем теплового действия электрического тока. В 1832 г. ученый впервые обратил внимание на изменение проводимости нагреваемых металлических проводников. Сконструировав прибор для измерения количества тепла, выделяемого при прохождении тока в платиновой проволоке, ученый провел большую серию опытов, позволивших ему сформулировать в 1843 г. новый закон, дающий количественную оценку теплового действия электрического тока: «Нагревание проволоки гальваническим током пропорционально квадрату служащего для нагревания тока». Как уже было сказано, Джоуль, проводя аналогичные эксперименты, выполнил гораздо меньше измерений и пользовался менее точным прибором. Научное сообщество не стало мелочиться и отдало приоритет в открытии закона обоим ученым.
Закон Джоуля – Ленца определяет количество тепла Q , выделяющегося в проводнике при прохождении через него электрического тока: Q пропорционально сопротивлению R проводника, квадрату силы тока I в цепи и времени прохождения тока t: ...Q = aI2Rt,
где а – коэффициент пропорциональности, зависящий от выбранных единиц измерения.
Сфера применения закона обширна. На нем основан расчет всех электрических цепей и электронных схем, электроосветительных установок, нагревательных и отопительных электроприборов.
Согласно закону, для уменьшения тепловых потерь в линиях электропередач повышают передаваемое напряжение, что снижает силу тока, а значит, и нагрев провода. Чтобы проводник чрезмерно не разогревался и не стал источником пожара, ввели нормы расчета сечений проводов.
На принципе разогрева проводника при увеличении его электрического сопротивления устроены все электронагревательные приборы, нагревательные элементы которых изготавливают из специальных тугоплавких сплавов с высоким удельным сопротивлением (нихром, константан) и по возможности большой длины и малого сечения провода.
Для защиты электрических цепей от протекания токов высокой силы используют электрические (плавкие) одноразовые предохранители относительно малого сечения из легкоплавкого сплава. При перегрузке в сети и при коротком замыкании тока эти проводники расплавляются и размыкают цепь, предохраняя ее от перегрева и возгорания.
ПОТОК ЭНЕРГИИ УМОВА
Физик, философ, педагог, лектор, пропагандист, популяризатор науки, общественный деятель; профессор Новороссийского и Московского университетов, Московского технического училища; почетный доктор Глазговского университета; основатель (совместно с П.Н. Лебедевым) Физического института при Московском университете; президент Московского общества испытателей природы, председатель Московского педагогического общества, товарищ председателя Общества содействия успехам опытных наук и практических применений им. Х.С. Леденцова; издатель и главный редактор журнала «Научное слово», Николай Алексеевич Умов (1846–1915) является автором учения о движении энергии в телах, базового понятия в новейшей физике – потока энергии, т. н. вектора Умова. Умов – первооткрыватель классической формулы общего уравнения движения энергии.
Человечество с каждым годом все больше нуждается в энергии – механической, тепловой, химической, электрической, ядерной. Все эти формы энергии, трансформируясь друг в друга, дают совокупность энергетических процессов, без которых не обойтись ни обывателям, ни ученым. Последних всегда интересовал вопрос – каким образом происходит эта трансформация и как повысить ее КПД? Схематично это выглядит так. В замкнутый объем через поверхность поступает первичная энергия, а затем выходит преобразованная (разумеется, в рамках закона сохранения энергии). Плотность потока энергии (Su) при этом ограничена физическими свойствами среды, через которую она течет. Этот термин – плотность потока энергии – ввел в начале 1870-х гг. русский физик Н.А. Умов, опубликовавший несколько работ о движении энергии, в которых развил представления о плотности энергии в данной точке среды, скорости и направлении движения энергии, о локализации потока энергии в пространстве.
Н.А. Умов
Ученый составил дифференциальные уравнения движения энергии в твердых телах постоянной упругости и в жидких телах, интегрируя которые и применяя к распространению волн в упругой среде, пришел к заключению, что энергия целиком переносится волной от одной точки к другой. «Количество энергии, проходящей через элемент поверхности тела в единицу времени, равно силе давления или натяжения, действующей на этот элемент, умноженной на скорость движения элемента» – этот вывод называется теоремой Умова. Уравнение непрерывности в свободном пространстве для движущихся упругих сред и вязких жидкостей имеет вид:
где Su = wv; w – плотность энергии; v – скорость движения среды.
После защиты ученым в 1874 г. докторской диссертации «Уравнения движения энергии в телах» Su принято называть в нашей стране вектором Умова.
В 1884 г. английский физик Д. Пойнтинг, независимо от Умова и ничего не зная о трудах русского ученого, получил подобное выражение для частного случая – электромагнитного поля (поперечных электромагнитных волн). На Западе без особых рефлексий вектор Умова переименовали в вектор Пойнтинга ( Sp ):...Sp = [E × H];
E и H – напряженности электрического и магнитного полей.
Сам Умов, кстати, отмечал, что его выводы применимы и в электромагнитных полях.
Необходимо различать принципиальную разницу между этими понятиями – Su и Sp . Вектор Пойнтинга можно рассматривать только применительно к электромагнитным полям, тогда как вектор Умова применим ко всем силовым полям без исключения, поскольку сами уравнения движения энергии получены Умовым для движения любого вида энергии, происходящего в любой среде, то есть носят самый общий характер.
Не прибегая к выкладкам, заметим еще, что вектор Умова Su описывает конвективный перенос энергии из одной точки пространства в другую, в частности полем движущегося заряда; а вектор Пойнтинга связан лишь с переносом энергии электромагнитными волнами.
Труды Умова своей математической сложностью представляли «крепкий орешек» для российских и зарубежных коллег Николая Алексеевича. Утверждали даже, что они «лишены какого бы то ни было научного смысла и представляют собой… простой набор математических формул». Раскусили их не сразу, но, раскусив, буквально растащили на цитаты, при этом не всегда озвучивая автора.
Так было и в других случаях. Когда Умов показал свою блестящую работу «О стационарном движении электричества на проводящих поверхностях произвольного вида» немецкому физику Г. Кирхгофу, тот тут же умыкнул главные положения этого исследования и опубликовал их под своим именем (не забыв, правда, упомянуть и русского ученого). Фактически то же самое произошло и со знаменитой формулой E = mc2 , которую русский физик получил лет за тридцать до А. Эйнштейна – опять же как общий случай для волновых процессов в упругих средах. (Умов вывел соотношение между энергией волновых полей и их инерцией: dE = c2dm ).
Но вернемся к вектору и к области его применения. Надо сказать, что область эта – широчайшая, как в науке, как и в технике. Без вектора Умова не обойтись при освоении нового вида энергии (скажем, термоядерной), при разработке сложного и дорогостоящего технического устройства (ТОКОМАК).