Ткань космоса: Пространство, время и текстура реальности - Брайан Грин
Шрифт:
Интервал:
Закладка:
{296}
О чрезвычайно интересных достижениях в области запутывания многочастичных систем рассказано, например, в статье: Julsgaard В., Kozhekin A., and Polzik Е. S. Experimental long-lived entanglement of two macroscopic objects. Nature. 2001. Sept. № 413. P. 400–403.
{297}
Одной из наиболее захватывающих и развивающихся областей науки, использующей запутывание квантовых состояний и квантовую телепортацию, являются квантовые вычисления. Квантовые вычисления на популярном уровне хорошо изложены в недавних книгах: Siegfried Т. The Bit and the Pendulum. New York: John Wiley, 2000; Johnson G. A Shortcut Through Time. New York: Knopf, 2003.
{298}
Одним из следствий эффектов замедления времени с увеличением скорости, который мы не обсуждали в главе 3, но который будет играть свою роль в данной главе, является так называемый парадокс близнецов. Дело вот в чём: если я и вы двигаемся друг относительно друга с постоянной скоростью, я буду думать, что я не двигаюсь и, следовательно, ваши часы идут медленнее моих. Но вы с тем же правом можете заявить, что это вы неподвижны, а двигаюсь я, и, значит, мои часы идут медленнее ваших. Может показаться парадоксальным, что каждый из нас думает, что часы другого идут медленнее, но этот парадокс легко разрешим. При относительном движении с постоянной скоростью наши часы будут всё удаляться друг от друга и, следовательно, у нас не будет никакой возможности для непосредственного сравнения показаний часов, чтобы определить, какие из них «на самом деле» идут медленнее. А все прочие косвенные сравнения показаний часов (например, с помощью сотовой связи) требуют некоторого времени и происходят на некотором пространственном отдалении, что непременно вводит в игру усложнения, связанные с различным представлением разных наблюдателей о том, что происходит «сейчас», о чём мы говорили в главах 3 и 5. Я не хочу вдаваться здесь во все подробности, но если учесть все релятивистские поправки, то не будет противоречия в том, что каждый из нас заявляет, что часы другого идут медленнее (полное, технически точное, но достаточно элементарное обсуждение этого парадокса приводится, например, в книге: Тейлор Э. Ф., Уилер Дж. А. Физика пространства-времени. М.: Мир, 1971). Ситуация становится более загадочной, если, к примеру, вы замедляетесь, останавливаетесь, поворачиваетесь и возвращаетесь ко мне, так что мы сможем напрямую сравнить показания наших часов, устраняя усложнения, связанные с различными представлениями о «сейчас». Когда мы встретимся, чьи часы будут показывать меньшее время? Это так называемый парадокс близнецов: если мы с вами близнецы, то кто из нас при встрече будет выглядеть старше или же мы будем выглядеть одинаково? Ответ такой: мои часы будут показывать большее время и, следовательно, я буду выглядеть старше. Есть множество способов объяснить, почему это так, но проще всего заметить, что когда вы меняете скорость и испытываете ускорение, теряется симметрия между нами — вы можете определённо сказать, что это вы двигаетесь (поскольку, к примеру, вы это чувствуете — или, вспоминая обсуждение в главе 3, в отличие от меня, ваше путешествие по пространству-времени происходит не по прямой линии) и, значит, ваши часы идут медленнее моих. Для вас пройдёт меньше времени, чем для меня.
[299]
Хрупкость человеческого тела — другое практическое ограничение: ускорение, требующееся для достижения таких высоких скоростей за разумный промежуток времени, находится далеко за пределами того, что может выдержать тело. Также заметим, что замедление времени позволяет, в принципе, достигать невероятно отдалённых мест пространства. Если в галактику Андромеды запустить с Земли ракету, развивающую скорость в 99,999999999999999999% от скорости света, то нам потребовалось бы ждать её возвращения около 6 млн лет. Но при такой скорости время на ракете столь сильно замедляется по отношению к ходу времени на Земле, что сам космонавт по возвращении постареет только на восемь часов (если игнорировать тот факт, что космонавт не смог бы выдержать ускорение при разгоне, повороте и торможении).
[300]
Один из последователей нейролингвистического программирования (НЛП), нестандартного подхода к психологии и человеческой коммуникации. Очень популярен в США благодаря своим публичным семинарам, после которых его участники запросто проходят по раскалённым углям, не получая никаких ожогов. (Прим. перев.)
{301}
Джон Уилер, среди прочих, предполагал возможность центральной роли наблюдателей в квантовой Вселенной. Это предположение отражено в одном из его известных афоризмов: «Никакое элементарное явление не является явлением, пока оно не становится наблюдаемым явлением». О захватывающей деятельности Уилера в области физики можно прочесть в книге: Wheeler J. A., Ford К. Geons, Black Holes, and Quantum Foam: A Life in Physics. New York: Norton, 1998. Роджер Пенроуз также исследовал связь между квантовой физикой и разумом в своих книгах «Новый ум короля» (М.: URSS, 2008), а также «Тени разума: в поисках науки о сознании» (М.; Ижевск: Ин-т компьютерных исследований, 2005).
{302}
См., например, «Reply to Criticisms» в томе 7 Albert Einstein из серии Library of Living Philosophers (P. A. Schilpp, ed. New York: MJF Books, 2001).
{303}
Stockum W. J. van. Proc. R. Soc. Edin. 1937. A 57. P. 135.
[304]
Еще один персонаж сериала о семейке Симпсонов, злейший враг Барта. (Прим. перев.)
{305}
Подготовленный читатель заметит, что я упрощаю. В 1966 г. Роберт Герох, будучи студентом Джона Уилера, показал, что можно, по крайней мере в принципе, создать кротовую нору, не разрывая пространство. Но в отличие от более понятного подхода с разрывом пространства для создания кротовой норы, при котором сам факт существования кротовой норы не влечёт за собой путешествие во времени, в подходе Героха на самой стадии создания кротовой норы время должно быть столь искажено, чтобы можно было свободно путешествовать вперёд-назад во времени (но если назад, то не дальше, чем в начало строительства).
{306}
Грубо говоря, если вы на скорости, близкой к скорости света, пересечёте область, содержащую такую экзотическую материю, и измерите среднюю плотность энергии, то она окажется отрицательной. Физики говорят, что существование такой экзотической энергии нарушает так называемое усреднённое слабое энергетическое условие.
{307}
Проще всего получить экзотическую материю благодаря квантовым флуктуациям электромагнитного поля между параллельными пластинами, как в эксперименте Казимира, о котором говорились в главе 12. Расчёты показывают, что уменьшение квантовых флуктуаций между пластинами (по сравнению с пустым пространством) ведёт к отрицательной средней плотности энергии (и к отрицательному давлению).
{308}
Поучительный, хотя и технический обзор кротовых нор содержится в книге: Visser M. Lorentzian Wormholes: From Einstein to Hawking. New York: American Institute of Physics Press, 1996.
[309]
Более подробно о геометрической дуальности циклических измерений и многообразий Калаби-Яу см. главу 10 книги «Элегантная Вселенная».
[310]
Тапперуэровский контейнер — пластиковый контейнер для хранения пищевых продуктов и других кухонных аксессуаров производства компании «Тапперуэр корпорейшн». Эти контейнеры примечательны тем, что распространяются не в магазинах, а на так называемых «тапперуэровских вечеринках», а теперь и через Интернет. (Прим. перев.)
{311}
Для математически подкованных читателей напомним примечание 107, говорящее о том, что энтропия определяется как логарифм количества всех перестановок (или состояний), что и даёт ответ на поставленный вопрос. Любое состояние молекул воздуха в двух соединённых контейнерах можно получить, задав состояние молекул воздуха в первом контейнера, а затем задав его во втором. Значит, количество перестановок для соединённых контейнеров равно квадрату возможных перестановок внутри каждого из контейнеров. Взяв логарифм от квадрата перестановок, мы получим удвоение энтропии.
{312}
Конечно, бессмысленно сравнивать объём с площадью поверхности, поскольку они имеют разные единицы измерения. Здесь я имею в виду то, что по мере увеличения радиуса объём растёт гораздо быстрее, чем площадь поверхности. Таким образом, поскольку энтропия пропорциональна площади поверхности, а не объёму, то она растёт медленнее, чем она бы росла, если бы была пропорциональна объёму.