Путешествие по Карликании и Аль-Джебре - Владимир Артурович Левшин
Шрифт:
Интервал:
Закладка:
— Тише, — сказал Судья, — я вам, кажется, не давал слова!.. Продолжайте, Пятёрка.
— Мне не о чем говорить, — возразила Пятёрка. — Я знаю, что числа имеют вес, но это надо понимать не в прямом, а в переносном смысле.
— Я возражаю против такого способа спорить, — заявила Единица. — Пятёрка отметает все мои доказательства и не предлагает сама никаких. Потому что у неё их нет! (Свист, аплодисменты.)
Я могу повторить только то, что сказала вначале, — спокойно ответила Пятёрка. — Величина дроби определяется не весом и не ростом, а значением!
— Способ, способ! — кипятилась Единица. — Вы только болтаете. Вы задавака!
— Прошу отметить в протоколе, что меня оскорбили! — возвысила голос Пятёрка.
— Делаю обоим спорщикам строгое предупреждение! — снова рявкнул Главный Судья. — Спор должен быть взаимно вежливым. Продолжайте.
— Я утверждаю, что 2/3 больше, чем 4/7, — сказала Пятёрка. — И сейчас вам это докажу. Без палок и весов! Попрошу на сцену моих помощников. Двух близнецов. Уважаемый ОЗ, поднимитесь, пожалуйста, сюда вместе со своим братом.
На сцене появились два одинаковых числа — 21.
— Почему она их называет ОЗами? — спросил шёпотом Сева.
— Это, наверное, сокращённые имена, — сказал Олег. — Ну конечно, это же общие знаменатели — ОЗы!
— Эти братья, — продолжала Пятёрка, — не что иное, как произведение знаменателей наших дробей — Тройки и Семёрки. Ведь семь, умноженное на три, равно двадцати одному. Попрошу вас, дорогие близнецы, встать на место знаменателей обеих дробей: вместо Семёрки и Тройки.
— Уважаемая Пятёрка, — возразили в один голос Общие Знаменатели, — мы никак не можем исполнить вашу просьбу. Если мы сейчас займём места знаменателей, вы проиграете спор — первая дробь окажется больше второй!
— Ага, что я говорила?! — обрадовалась Единица.
— Не радуйтесь преждевременно, — остановила её Пятёрка. — Я просто немного поспешила. Спасибо вам, дорогие ОЗы, за ваше замечание. Конечно, надо одновременно изменить и числители обеих дробей. Я не успела об этом сказать. Ведь при замене знаменателей сами дроби не должны меняться. Итак, заменим одновременно и числители и знаменатели.
И тут произошло нечто необыкновенное: Семёрка поднялась к Двойке, Тройка — к Четвёрке, и между каждой парой мгновенно блеснул знак умножения.
На секунду погас свет, и мы увидели по бокам сцены новые дроби:
12/21 и 14/21.
— Хоть эти дроби и новые, — пояснила Пятёрка, — но величины их ведь не изменились. Как вы думаете?
Единица сделала презрительную гримасу и ничего не ответила.
— Итак, моё доказательство готово! Как видите, знаменатели у дробей одинаковые, а числители разные. Так какая же из этих дробей больше?
— Та, у которой больше числитель! — не выдержал Сева.
— Прошу не подсказывать с места! — загремел Главный Судья.
— Вы совершенно правы, милый школьник, — заметила Пятёрка. — Дробь 14/21, конечно, больше, чем дробь 12/21. Следовательно, истина на моей стороне.
Зрители неистово аплодировали. Судьи, посовещавшись, встали.
— Объявляю решение суда! — протрубил Главный Судья. — Победила Пятёрка! (Молодец! — пронеслось по залу.) Отныне запрещаю при сравнении дробей пользоваться каким-либо иным способом! Диспут окончен!
— Внимание! — крикнули из зала. — У меня есть объявление! Для участников диспута сегодня состоится цирковое представление. Небывалый трюк — Дроби на трапециях! Вход в цирк только по клубным билетам. Нервных просят не приходить.
Толпа хлынула на улицу.
Смертельный аттракцион
Оркестр сыграл весёлое вступление.
На манеже, у главного выхода, выстроились униформисты, и представление началось.
Жонглёров сменяли акробаты, акробатов — гимнасты… Вот на арену выбежала тоненькая, гибкая Тройка; она исполнила пластический этюд; сперва под музыку медленно превратилась в Шестёрку, затем в Девятку и, наконец, в Восьмёрку!
Потом молодая наездница — изящная Пятёрка танцевала на спине у лошади, прыгала на полном ходу сквозь обруч и так быстро вертела своей маленькой головкой направо и налево, что никто не мог различить: Пятёрка это или Тройка.
Затем на манеж вышел фокусник. Он засучил рукава и предложил каждому зрителю задумать какое-нибудь число.
— Все задумали? — спросил он.
— Все! — ответили зрители хором.
Мои спутники тоже задумали — число 11.
— Попрошу, — сказал фокусник, — умножить задуманное число на 6.
Зрители стали в уме множить на шесть и при этом шевелили губами.
— Одиннадцать на шесть, — шептала Таня, — будет шестьдесят шесть.
— Прибавьте к полученному число 21, — скомандовал фокусник. — Прибавили?
У моих ребят получилось 87.
— Так! — неслось с манежа. — Разделите сумму на 3. (Двадцать девять! — толкнул меня Сева.) Затем вычтите 5. (Останется двадцать четыре, — зашептали ребята.) Теперь разделите на 2! — приказал фокусник. — Разделили?
— Сейчас, — крикнул кто-то с галёрки. — Одна минутка. Есть!
— Получается двенадцать, — переглянулись ребята.
— Теперь остаётся только одно, — заключил фокусник, — отнять единицу. И я вам скажу, какой у кого получился ответ. У каждого получилось то число, которое он задумал. Верно?
— Верно! — крикнул Сева. — Одиннадцать!
— Верно! — неслось со всех сторон. — Восемь! Верно — шесть! Верно — пять, семнадцать, четыре!
Под бурные аплодисменты фокусник долго раскланивался, а потом перешёл к следующему фокусу.
— В этом ящике находятся обыкновенные нули. Они вам хорошо знакомы. Беру вот этот топор и разрубаю каждый нуль на любое число частей. (Цирк в ужасе ахнул.) Вот этот нуль на пять частей, этот — на семь, а этот — на тридцать две. Готово! Теперь осмотрите ящик, он совершенно пуст. Бросаю обломки нулей сюда. Накрываю ящик платком. Внимание!
Фокусник ударил по ящику волшебной палочкой и произнёс: «Ой, люли, ой, люли! Выходите все нули!»
Он быстро сорвал платок — из ящика один за другим выпрыгнули нули: они были целёхоньки!
Зрители неистовствовали.
— Видите, — сказал фокусник, — на сколько бы частей я ни делил нуль, он всегда останется нулём. Нуль, делённый на любое число, есть нуль! А теперь, — продолжал он таинственно, — я вам покажу самый страшный фокус. Попрошу кого-нибудь выйти на манеж. Пусть это будет самый маленький карликан, всё равно. Я на ваших глазах разделю его на нуль! Кто хочет выйти