Удивительная механика - Нурбей Гулиа
Шрифт:
Интервал:
Закладка:
Сегодняшний возврат к электромобилям (как и к паромобилям, воздухомобилям и т. п.) вызван отнюдь не тем, что у инженеров появились какие-нибудь принципиально новые идеи, связанные с коренным улучшением электромобилей. Нет, просто стало трудно дышать в крупных городах из-за выхлопных газов двигателей, и к тому же быстро кончаются мировые запасы топлива. Отсюда возникла необходимость спешно найти замену автомобилю с двигателем внутреннего сгорания. Вот и вспомнили про электромобили.
Российский грузовой электромобиль, используемый на ВВЦКак я уже сказал, меня удивляла противоречивость сообщений об электромобилях. Например, в одной из публикаций я прочел, что французские инженеры построили электромобиль с дальностью пробега 500 км, а скорость и разгон у него – ну прямо как у спортивных автомобилей. Спустя какое-то время после этого сообщения американские специалисты решительно заявили, что электромобили пока способны проходить лишь 50—60 км с одной зарядки, максимальная скорость у них не выше 80 км/ч, а разгон – и вовсе никуда не годится. В гору такой электромобиль вообще не может быстро двигаться. По своим характеристикам это скорее не электромобиль, а электрокар – аккумуляторная тележка, какие ездят по территории заводов.
Чего только не приходилось читать и про зарядку аккумуляторов. Писали, например, что уже созданы электронные установки для зарядки аккумуляторов за считанные минуты и чуть ли не секунды. Но тем не менее до сих пор аккумуляторы еще заряжают в течение многих часов.
Короче говоря, я задумал построить модель электромобиля, чтобы все проверить самому. Признаться, осуществить задуманное оказалось нелегко. Постоянно вставали вопросы: «Где раздобыть то?», «Где найти это?». Но раз уж взялся за дело, нужно было доводить его до конца.
В своей конструкции я использовал раму от маленького спортивного автомобиля – карта. Задние колеса взял побольше, от мопеда, а передние – от детского самоката. На раму позади сиденья поставил одну аккумуляторную батарею от автомобиля МАЗ (там две такие батареи), которую выпросил на время у знакомого водителя. Масса этой батареи – около 40 кг, батарея была совершенно новая и очень емкая.
В качестве тягового двигателя я применил стартерный двигатель от легкового автомобиля. Правда, двигатель пришлось разобрать и заменить в нем шестерню таким же по размеру стальным цилиндром с накаткой, как у напильников, для большей шероховатости. Впоследствии я убедился, что можно было и не снимать шестерню, а посадить на зубья стальное кольцо с накаткой, залив пространство между зубьями эпоксидным клеем. Такие цилиндры или кольца, передающие движение трением, в технике называются фрикционами.
Мой микроэлектромобильСтартерный двигатель я установил у одного из задних колес, на качающемся рычаге. Вместе с фрикционом двигатель прижимался к колесу пружиной. С аккумуляторной батареей он был соединен несколькими толстыми проводами так, чтобы к нему можно было подключать различное напряжение: 6, 8, 10 и 12 В. Один провод – общий, а другие подключались к клеммам стартера через соответствующие переключатели. Каждому напряжению соответствовал отдельный переключатель. Получилась своеобразная коробка передач.
Управление машиной было несложным – руль и переключатели, которые обеспечивали нужную скорость. Тормоза я взял от мопеда. Задние колеса посадил на ось с помощью подшипников, привод был только на одно колесо. Это давало возможность автомобилю свободно поворачивать вправо и влево. Такие приводы характерны для микро-мобилей.
Я немало поездил на своем электромобиле. Выбирал и ровные, и наклонные дороги, развивал на некоторых участках скорость до 40 км/ч. Единовременный пробег в разных дорожных условиях составлял около 10 км, дальше разряжать аккумулятор было ни к чему – он мог испортиться. Соотношение массы аккумулятора и мощности двигателя (стартера) с массой электромобиля (а он весил со мной вместе до 100 кг) оказалось примерно таким же, как и у стандартных зарубежных электромобилей. Поэтому мои выводы могли быть распространены на все эти машины. А выводы были следующие: электромобиль прекрасно идет по ровным дорогам с постоянной скоростью; дальность пробега электромобиля в этих условиях может быть достаточно большой, в расчете, конечно, на емкие аккумуляторы; разгоняется электромобиль очень вяло, медленно набирает скорость. Он не может вписаться в городское движение. У светофора, например, он будет сдерживать всю колонну автомобилей позади себя; в гору электромобиль либо не едет вообще, либо едет очень медленно и очень недолго; аккумуляторы при этом мгновенно «садятся»; торможения и разгоны катастрофически сокращают дальность пробега электромобиля; десяток торможений и разгонов до предельной скорости поглощает всю энергию аккумулятора; зарядка аккумуляторов удручающе длительна.
В чем тут дело? Казалось бы, электродвигатель обладает всеми положительными качествами, необходимыми автомобилю, – способностью переносить перегрузки, удобством управления, экономичностью. Троллейбус, который приводится в движение электромотором, при разгонах оставляет далеко позади себя автобусы с двигателем внутреннего сгорания, перегоняет их при движении на подъемах. Почему же электромобиль отстает от троллейбуса?
Да потому, что троллейбус получает энергию извне, от электросети, а электромобиль – от собственной батареи. А электроаккумуляторы, даже с большой плотностью энергии, обеспечивающей долгий пробег, имеют очень небольшую плотность мощности. Этот показатель у электроаккумуляторов во много раз ниже, чем у автомобильных двигателей.
Например, хороший двигатель массой 100 кг развивает мощность до 80-100 кВт. А аккумуляторная батарея той же массы – не более 8 кВт! И то при этом она достаточно быстро разряжается. Для того чтобы полностью сравняться с автомобилем, электромобиль должен иметь аккумулятор, основные показатели которого – плотность энергии и мощность – были бы в пять-десять раз выше нынешних. Что ж, видимо, этим и придется заняться специалистам.
Водородные генераторы
В романе Жюля Верна «Пять недель на воздушном шаре» и в некоторых других его произведениях упоминается идея получения энергии путем разложения воды электрическим током на водород и кислород, а затем соединения этих элементов снова в воду. Если бы это производилось с помощью не гальванических элементов, а какого-нибудь менее дорогого источника энергии, то метод вполне подошел бы для решения задачи накопления энергии. Во всяком случае, суть «водородного аккумулирования» именно такова.
Представим себе ветроэлектростанцию, которая вырабатывает энергию только тогда, когда есть ветер. Ветер может дуть всю ночь, но в это время электроэнергия практически не нужна, а днем при максимальной потребности в энергии он вдруг стихает. Ветру не прикажешь дуть или не дуть. Заманчиво, конечно, накапливать энергию ночью в электроаккумуляторах, однако их потребуется слишком много, да и долговечность их невелика.
А что если попробовать при избытке электроэнергии, например ночью, использовать ее для разложения воды на водород и кислород? Газы можно накапливать в специальных емкостях – газгольдерах, а потом, при прекращении ветра, сжигать в двигателях внутреннего сгорания или в паровых двигателях с целью последующей выработки электроэнергии. Достаточно вал двигателя, работающего на водородно-кислородной смеси, соединить с валом электрогенератора.
Схема работы топливного элементаВ таком примерно виде этот метод был разработан в прошлом веке известным изобретателем А. Г. Уфимцевым. Но, подсчитав все «за» и «против», сам же Уфимцев отказался от своей идеи. Дело в том, что КПД газового двигателя внутреннего сгорания не выше 25 %. К тому же для работы на чистом водороде и кислороде ни один из существующих двигателей не предназначен – столь опасная смесь просто взорвет его. КПД паровых двигателей еще ниже. И плюс ко всему – нужно крутить электрогенератор, в котором свои потери энергии. Выходит, что работа целого комплекса сложных машин не принесет желаемого результата, отдача энергии будет очень мала.
Может быть, сделать иначе? Получая из воды водород и кислород, мы пропускаем через нее ток по электродам. Вода, подкисленная или «подщелоченная», является здесь проводником тока, электролитом. А нельзя ли наоборот – подавая кислород и водород снова к электродам, получить взамен ток? Вернуть ту электроэнергию, которая была затрачена на разложение воды?
Оказывается, ученые работают над этим уже давно. Еще в позапрошлом веке было замечено, что если в горячий раствор едкого кали поместить платиновые электроды и к одному из них медленно направить водород, а к другому кислород, то на электродах появится разность потенциалов. Платина играла роль катализатора реакции окисления – восстановления водорода и кислорода. Стоило соединить электроды, как возникал электрический ток. Сразу получить большой ток не удалось, и вся последующая работа над прямым преобразованием энергии топлива в электричество заключалась как раз в том, чтобы увеличить мощность этого процесса.