Ткань космоса: Пространство, время и текстура реальности - Брайан Грин
Шрифт:
Интервал:
Закладка:
{128}
В конце главы 4 отмечено, что результат Белла, Аспекта и других не исключает возможности, что частицы всегда имеют определённые положения и скорости, хотя мы никогда не можем определить такие свойства одновременно. Более того, версия квантовой механики Бома явно реализует такую возможность. Таким образом, хотя широко распространённое мнение, что электрон не имеет положения до измерения, является стандартной особенностью общепринятого подхода к квантовой механике, но, строго говоря, это слишком сильно для общего утверждения. Обратим внимание, однако, что в подходе Бома, как мы будем обсуждать далее в этой главе, частицы «сопровождаются» вероятностными волнами; т. е. теория Бома всегда привлекает частицы и волны, тогда как стандартный подход демонстрирует дополнительность, которая, грубо говоря, означает частицы или волны. Таким образом, заключение, к которому мы приходим, — что квантово-механическое описание прошлого было бы совершенно неполным, если бы мы говорили исключительно о частицах, проходящих через единственную точку пространства в каждый определённый момент времени (что мы бы делали в классической физике), — тем не менее остаётся верным. В обычной квантовой механике мы обязаны включить все возможные другие положения, которые частица могла бы занимать в любой данный момент, тогда как в подходе Бома мы должны также включить «волну-пилот» — объект, который также распределён по всем возможным положениям. (Подготовленный читатель должен заметить, что волна-пилот есть просто волновая функция обычной квантовой механики, хотя её воплощение в теории Бома несколько отличается.) Чтобы избежать бесконечных оговорок, последующую дискуссию будем проводить с точки зрения обычной квантовой механики (более широко используемого подхода), оставив ссылки на подход Бома и другие подходы до последнего раздела главы.
[129]
В русскоязычной литературе чаще употребляется термин «суммирование по путям» или «интегрирование по путям» (или, в более общем случае, когда речь идёт не об отдельных частицах, а о квантованных полях, метод называется континуальным интегрированием). (Прим. ред.)
{130}
Для математизированного, но на очень высоком педагогическом уровне, изложения теории интеграла по путям (суммирования по историям) см.: Фейнман Р., Хибс А. Квантовая механика и интегралы по траекториям. М.: Мир, 1968.
[131]
Хотя может показаться, что фейнмановский подход через суммы по историям делает акцент на корпускулярной стороне дела, это просто специальная интерпретация вероятностной волны (поскольку она включает много историй отдельных частиц, каждая даёт свой собственный вероятностный вклад), так что такая интерпретация подключает волновую сторону как дополнительную. Когда мы говорим о чём-то, ведущем себя как частица, мы всегда имеем в виду обычную частицу, которая движется вдоль одной и только одной траектории.
{132}
Вы можете попытаться привлечь дискуссию главы 3, в которой мы узнали, что при достижении скорости света время останавливается, чтобы доказать, что с точки зрения фотона все моменты времени есть один и тот же момент, так что фотон «знает», как установлен выключатель детектора, когда он проходит через светоделитель. Однако эти эксперименты могут быть проведены и с другими видами частиц, такими как электроны, которые двигаются медленнее света, а результаты останутся неизменными. Таким образом, это объяснение не касается сути физики явления.
[133]
В психологии есть даже специальный термин — ретроспективная аберрация памяти. (Прим. ред.)
[134]
Игра в бейсбол состоит из девяти периодов — иннингов, каждый иннинг завершается после трёх выбываний игроков (аутов). Детальное понимание правил игры не особенно существенно для дальнейшего. Суть примера заключается в том, что сделанная в прошлом ошибка иногда может быть исправлена последующими действиями. (Прим. ред.)
[135]
Если этот раздел окажется трудным, вы можете спокойно перейти к следующему разделу, последовательность изложения не потеряется. Но я призываю вас разобраться с ним, так как результаты в полном смысле слова изумительны.
[136]
Англоязычный термин down-conversion не имеет общепринятого русского перевода, и иногда переводится как параметрическое преобразование частоты вниз или параметрическое рассеяние, но последнее время всё чаще используется фонетическая калька даун-конверсия. Мы следуем последнему варианту. (Прим. ред.)
[137]
Левый путь — значит, соответствующий букве L на рис. 7.5б. На рисунке левая часть установки (L) изображена справа, а правая (R) — слева. (Прим. ред.)
{138}
Экспериментальная установка, а также реально подтверждённые экспериментальные результаты обсуждаются в статье: Kim Y., Yu R., Kulik S., Shih Y., Scully M. Phys. Rev. Lett. Vol. 84. № 1. P. 1–5.
{139}
Квантовая механика также может основываться на эквивалентном уравнении, представленном в другой форме Вернером Гейзенбергом в 1925 г. (это представление известно как матричная механика). Для склонного к математике читателя приведём уравнение Шрёдингера:
где H обозначает гамильтониан, Ψ обозначает волновую функцию, а ħ есть постоянная Планка.
{140}
Подготовленный читатель отметит, что я здесь пропустил одно тонкое место. А именно, нам бы пришлось взять комплексно сопряжённую волновую функцию частицы, чтобы она была решением обращённого во времени уравнения Шрёдингера. Это означает, что описанный в примечании 2 к главе 6 оператор T, действуя на волновую функцию Ψ(x, t), отображает её в Ψ*(x, −t). Это не влияет существенно на обсуждение в тексте.
[141]
Квантовая механика справедливо имеет репутацию описывать что угодно, но только не нечто гладкое и размеренное; скорее, как мы явно увидим в последующих главах, она выявляет турбулентный и дрожащий микрокосмос. Причиной этого дрожания является вероятностная природа волновой функции — даже если вещи могут иметь некоторый вид в один момент, имеется вероятность, что они будут существенно другими моментом позже, — и это не есть всегда существующие колебания самой волновой функции.
[142]
Сполдинг Грей — американский актёр. (Прим. ред.)
{143}
Бом на самом деле заново открыл и дальше развил подход, который восходит к принцу Луи де Бройлю, так что этот подход иногда называют подходом де Бройля-Бома.
{144}
Для склонного к математике читателя заметим, что подход Бома локален в конфигурационном пространстве, но определённо нелокален в реальном пространстве. Изменения волновой функции в одном месте в реальном пространстве немедленно оказывают влияние на частицы, расположенные в других, удалённых местах.
{145}
Для исключительно ясного обсуждения подхода Жирарди-Римини-Вебера и его применения к пониманию квантового запутывания см.: Bell J. S. Are There Quantum Jumps? in Speakable and Unspeakable in Quantum Mechanics. Cambridge, Eng.: Cambridge University Press, 1993.
{146}
Некоторые физики рассматривают вопросы из этого списка как не относящиеся к делу и являющиеся побочным продуктом ранней путаницы в понимании квантовой механики. Волновая функция, утверждает эта точка зрения, является просто теоретическим средством, чтобы делать (вероятностные) предсказания, и не должна соответствовать никакой, кроме математической, реальности (точка зрения, которую иногда называют подходом «Заткнись и вычисляй», поскольку она поощряет использовать квантовую механику и волновые функции, чтобы делать предсказания, не задумываясь сильно о том, что на самом деле означают и делают волновые функции). Вариант этой точки зрения утверждает, что волновые функции никогда на самом деле не коллапсируют, но что взаимодействия с окружающей средой делают так, что кажется, что коллапсируют. (Мы коротко обсудим версию такого подхода.) Я симпатизирую этим идеям и, фактически, очень надеюсь, что рано или поздно мы будем обходиться без услуг понятия коллапса волновой функции. Но я не нахожу первый подход удовлетворительным, также я не готов отказаться от понимания, что происходит в мире, когда мы «не смотрим» на него, а второй подход — при том, что, на мой взгляд, это есть правильное направление, — требует дальнейшей математической разработки. Суть в том, что измерение вызывает нечто, что есть, или похоже на, или маскируется под коллапс волновой функции. Либо через лучшее понимание влияния окружения, либо через некоторые другие подходы, которые ещё должны быть предложены, но этот явный эффект требует рассмотрения, а не просто выбрасывания из головы.