Финансы - Роберт К. Мертон
Шрифт:
Интервал:
Закладка:
При ST 100 долл.
При ST 100 долл.
Продажа опциона «колл»
18 долл.
0
-( ST-100 долл.)
Покупка дублирующего портфеля ценных бумаг
Синтетический опцион «колл»
Покупка акций
Получение займа в размере приведенной стоимости 100 долл.
Покупка опциона «пут»
Чистые денежные поступления
-100 долл.
92,59 долл.
-10 долл.
0,59 долл.
ST
-100 долл.
10 долл. -ST
0
ST
-100 долл.
0
0
Некоторые дополнительные сведения о характере взаимосвязей между опционами "пут", опционами "колл", акциями и облигациями можно получить, перегруппировав слагаемые в уравнении 15.2 следующим образом:
В таком виде уравнение паритета опционов "пут" и "колл" свидетельствует о том, что
• если курс акций равен приведенной стоимости цены исполнения опциона, то цена опциона "колл" равна цене опциона "пут";
• если курс акций превышает приведенную стоимость цены исполнения опциона, то цена опциона "колл" превышает цену опциона "пут";
• если курс акций меньше приведенной стоимости цены исполнения опциона, то цена опциона "пут" превышает цену опциона "колл".
15.4. ВЛИЯНИЕ ИЗМЕНЧИВОСТИ КУРСА АКЦИЙ НА ЦЕНУ ОПЦИОНА
Чем выше изменчивость курса акций, тем выше цены и опционов "пут", и опционов "колл" на эти акции. Для того чтобы понять, почему это происходит, рассмотрим случай, в котором цена интересующего инвестора пакета акций может принять через год, считая с сегодняшней даты, только одно из двух значений — либо 120 долл., либо 80 долл. — причем каждое из них с вероятностью 0,510.
Таким образом, ожидаемая (или, говоря иначе, средняя) цена пакета акций к концу года составит 0,5 х 120 долл. + 0,5 х 80 долл. = 100 долл.
Рассмотрим теперь бпцион "колл" на акции с ценой исполнения 100 долл., дата истечения для которого наступает через один год. При наступлении срока истечения опцион "колл" либо принесет доход в 20 долл., если цена пакета акций составит 120 долл., либо не будет реализован, если цена составит 80 долл. Таким образом, ожидаемые (средние) поступления по опционам "колл" равны 0,5 х 20 долл. +0,5х0= 10 долл.
Предположим, что цена пакета акций становится более изменчивой, при этом его ожидаемая (средняя) в конце года цена остается прежней. Предположим, например, что два возможных значения цены акций в конце года равны теперь 200 долл. и О, каждое из них может наблюдаться с вероятностью 0,5.
10 В этом разделе использование одинаковых по своему значению терминов "курс акций " и "цена акций " обусловлено стилистическими требованиями. В рассматриваемых примерах пакет акций состоит из 1 акции. — Прим. ред.
Ожидаемая к концу года цена пакета акций по-прежнему равна 100 долл. (0,5 х 200 долл. + 0,5 х 0), однако изменчивость цены теперь значительно выше. Ожидаемая величина денежных платежей по опциону "колл" составит теперь 50 долл. {0,5 х 100 долл. + 0,5 х 0), что выше прежнего на 40 долл. Понятно, что цена опциона "колл" возрастет. Таким образом, мы видим, что повышение изменчивости цени (при неизменной текущей цене акций) приводит к увеличению' ожидаемых доходов по опционам "коля" на эти акции и, таким образом, к повышению складывающейся цены на них. Такое же'утверждение справедливо и для опционов "пут".
Аналогичные соображения применимы и в более общем случае — прц непрерывном распределении вероятностей для цены акций, лежащих в основе опциона. Доход от опциона на дату истечения неможет быть отрицательным. В худшем .случае опцион ничего не будет стоить и контракт не будет выполняться. Таким образом, распределение вероятностей для доходов по опционам при нуле обрезается. Это приводит к тому, что ожидаемые доходы по опционам растут тем больше, при неизменном значении ожидаемых (средних) доходов по акциям, чем больше изменчивость цены подлежащих акций.
Итак, усиление изменчивости курса акций при неизменном текущем курсе и ожидаемой доходности акций приводит к повышению ожидаемой доходности опционов "пут" и опционов "колл'* на эти акции. Следовательно, при повышении изменчивости курса акций возрастают цены на опционы "пут" и "колл". Более того, из уравнения паритета опционов "пут" и "колл" следует, что повышение изменчивости курса акций должно приводить к одинаковому росту цен на опционы "колл" и соответствующие опционы "пут" (т.е. опционы "пут", имеющие тот же срок истечения и цену выполнения, что и опцион "колл").
15.5. ДВУХСТУПЕНЧАТАЯ (БИНОМИАЛЬНАЯ) МОДЕЛЬ ОЦЕНКИ СТОИМОСТИ ОПЦИОНОВ
Как мы уже видели при рассмотрении уравнения паритета опционов "пут" и "колл" (уравнение 15.2), с его помощью можно выразить цену опциона "колл" через курс подлежащих акций, безрисковую процентную ставку и цену соответствующего опциона "пут". Однако было бы желательно иметь возможность рассчитывать цену на опцион "колл", не зная цену на опцион "пут". Для этого необходимо сделать некоторые предположения относительно распределения вероятностей для предполагаемого в будущем курса акций. , ;
Предположим, что курс акций может принимать при наступлении срока истечения опциона только одно из двух возможных значений. Несмотря на то что. такое предположение нереалистично, подобная двухступенчатая модель (^у/о-5Ы1е тоое!) создает основу для более реалистичной и широко используемой на практике биномиальной модели (Ьшопиа! тоае!) оценки стоимости опционов. Интуитивное представление о стоимости опционов на основании двухступенчатой модели ведет также и к модели Блэка—Шоулза.
Метод, используемый в данном случае, подобен тому, что применялся для получения уравнения паритета опционов "пут" и "колл". При использовании только акций и безрискового займа конструируется синтетический опцион "колл". Далее в соответствии с законом единой цены определяется цена опциона "колл", которая должна равняться цене построенного таким образом синтетического опциона "колл".
Рассмотрим одногодичный опцион "колл" с ценой исполнения 100 долл. Мы исходим из того, что цена подлежащего пакета акций в данный ммент составляет 100 долл. и может; вырасти «ли уиасть в течение года на 20%. Таким образом, на дату истечения опциона, через год, считая от сегодняшней даты,, цена может оказаться равной либо 120 долл., либо 80 долл. Безрисковая: процентная ставка равна 5% годовых.
Сравним теперь доход по опционам "колл" с доходом портфеля, состоящего из акций, покупка которых частично финансировалась с использованием средств, полученных в кредит по безрисковой ставке. Поскольку в качестве обеспечения займа выступают сами акции, максимальная сумма, которую инвестор может получить в виде займа под безрисковую процентную ставку, соответствует приведенной стоимости акций, исходя из минимально возможной через год их цены. Минимальная цена равна 80 долл., таким образом сумма, которую можно получить взаймы сегодня, равна 80 долл. / 1,05 = 76,19 долл. Доходы по этому портфелю находятся в следующей зависимости от курса акций через год.
' Далее следует найти, какая часть пакета акций необходима для дублирования дохода по опциону "колл". Такая часть называется коэффициентом хеджирования (Ьей^е гапо) опциона. В более широком смысле коэффициент хеджирования в двухступенчатой модели представляет собой разность между двумя возможными денежными платежами по опциону, делённую на разность двух возможных предельных цен пакета подлежащих акций: В данном случае это
Таким образом, если бы мы купили 1/2 пакета акций и заняли для этих целей только 38,095 долл., у нас получился бы синтетический опцион "колл". Сумма займа представляет собой максимальную сумму, которая может быть совершенно определенно возвращена с процентами по наступлении срока истечения. Поскольку в нашем примере худший из возможных результатов для половины пакета акций составляет 40 долл., подлежащая займу .сумма равна приведенному значению 40 долл., дисконтированному по безрисковой процентной ставке 5%, что составляет 38,095 долл.
В табл. 15.6 показаны денежные платежи по самому опциону "колл" и посинтети-ческому опциону "колл", генерируемому таким дублирующим портфелем.
В соответствии с законом единой цены опцион "колл" и соответствующий ему дублирующий портфель (синтетический опцион "колл") должны иметь одинаковую стоимость, в результате чего цена опциона "колл" должна равняться
С =0,5^-38,095 долл. = 50 долл. - 38,095 долл. =11,905 долл.
15.6. ДИНАМИЧЕСКОЕ ДУБЛИРОВАНИЕ ОПЦИОНОВ И БИНОМИАЛЬНАЯ МОДЕЛЬ