Большая Советская Энциклопедия (ДИ) - БСЭ БСЭ
Шрифт:
Интервал:
Закладка:
О. Н. Терёшин, Г. К. Галимов.
Диэлектрическая антенна: 1 — конусообразный стержень; 2 — штырь, излучающий радиоволны в стержень; 3 — коаксиальный кабель. Стрелками показано направление излучения антенны.
Диэлектрическая восприимчивость
Диэлектри'ческая восприи'мчивость, величина, характеризующая способность диэлектриков к поляризации. Количественно Д. в. — коэффициент пропорциональности c в соотношении P = cЕ, где Е — напряжённость электрического поля, P — поляризация диэлектрика (дипольный момент единицы объёма диэлектрика). Д. в. характеризует диэлектрические свойства вещества так же, как и диэлектрическая проницаемость e, с которой она связана соотношением: e = 1 + 4pc.
Лит. см. при ст. Диэлектрики.
Диэлектрическая постоянная
Диэлектри'ческая постоя'нная, устаревшее название диэлектрической проницаемости.
Диэлектрическая проницаемость
Диэлектри'ческая проница'емость, величина, характеризующая диэлектрические свойства среды — её реакцию на электрическое поле. В соотношении D = eЕ, где Е — напряжённость электрического поля, D — электрическая индукция в среде, Д. п. — коэффициент пропорциональности e. В большинстве диэлектриков при не очень сильных полях Д. п. не зависит от поля Е. В сильных электрических полях (сравнимых с внутриатомными полями), а в некоторых диэлектриках (например, сегнетоэлектриках) в обычных полях зависимость D от Е — нелинейная (см. Нелинейная оптика).
Величина Д. п. существенно зависит от типа вещества и от внешних условий (температуры, давления и т.п.). В переменных электрических полях Д. п. зависит от частоты поля Е (см. Диэлектрики). О методах измерения Д. п. см. Диэлектрические измерения.
Лит. см. при ст. Диэлектрики, Электроизоляционные материалы.
Диэлектрическая электроника
Диэлектри'ческая электро'ника, область физики, занимающаяся исследованием и практическим применением явлений, связанных с протеканием электрических токов в диэлектриках. Концентрация электронов проводимости или каких-либо других свободных носителей заряда в диэлектриках (дырок, ионов) пренебрежимо мала. Поэтому до недавнего времени диэлектрики в электро- и радиотехнике использовались только как изоляторы (см. Электроизоляционные материалы). Исследования тонких диэлектрических плёнок показали, что при контакте с металлом в диэлектрик переходят электроны или дырки, в результате чего у контакта в тонком слое диэлектрика появляются в заметном количестве свободные носители заряда. Если диэлектрик массивный, то весь его остальной объём действует по-прежнему как изолятор, и поэтому в системе металл—диэлектрик—металл ток ничтожно мал. Если же между двумя металлическими электродами поместить тонкую диэлектрическую плёнку (обычно 1—10 мкм), то эмитируемые из металла электроны заполнят всю толщу плёнки и напряжение, приложенное к такой системе, создаст ток через диэлектрик.
Теоретически возможность протекания управляемых эмиссионных токов через диэлектрик была предсказана английскими физиками Н. Моттом и Р. Гёрни в 1940. Д. э. изучает протекание токов, ограниченных пространственным зарядом в диэлектриках, при термоэлектронной эмиссии из металлов и полупроводников, при туннельной эмиссии и т.д.
Простейший прибор Д. э. — диэлектрический диод представляет собой сандвич-структуру металл—диэлектрик—металл (рис. 1). Он во многом аналогичен электровакуумному диоду и поэтому называется аналоговым. Его выпрямляющее действие обусловлено различием работы выхода электронов из электродов, изготовленных из разных металлов. Для одного из электродов — истока (аналог катода) применяется металл, у которого работа выхода электронов в данный диэлектрик мала (доли эв); для второго (сток — аналог анода) — металл с большой работой выхода (1—2 эв). Поэтому в одном направлении возникают значительные токи, а в обратном направлении токи исчезающе малы. Коэффициент выпрямления диэлектрического диода достигает значений 104 и выше.
Создание диэлектрического триода связано с технологическими трудностями размещения управляющего электрода — затвора (аналог сетки в электровакуумном триоде) в тонком слое диэлектрика между истоком и стоком. В одном типе триода эмиссия происходит из полупроводника n, обладающего электронной проводимостью, в высокоомный полупроводник р с дырочной проводимостью, который играет роль диэлектрика (рис. 2). Низкоомные области, образованные из полупроводника Р+ с высокой дырочной проводимостью, исполняют роль, во многом сходную с ролью металлических ячеек сетки электровакуумного триода. Подаваемое на эти области внешнее напряжение управляет величиной тока, протекающего между истоком и стоком.
В другом типе триода (рис. 3) затвор помещён вне диэлектрика CdS; его роль сводится к изменению распределения потенциала в диэлектрике, от чего существенно зависит величина тока. Физическая картина явлений в этих триодах значительно сложнее и существенно отличается от протекания эмиссионных токов в вакууме. Распространение получили триоды с изолированным затвором МОП (металл—окисел— полупроводник) или МДП (металл—диэлектрик—полупроводник).
В приборах Д. э. удачно сочетаются достоинства полупроводниковых и электровакуумных приборов и отсутствуют многие их недостатки. Приборы Д. э. микроминиатюрны. Создание эмиссионных токов в диэлектриках не требует затрат энергии на нагрев эмитирующего электрода и не сталкивается с проблемой отвода тепла. Диэлектрические приборы малоинерционны, обладают хорошими частотными характеристиками, низким уровнем шумов, мало чувствительны к изменениям температуры и радиации.
Лит.: Мотт Н., Герни Р., Электронные процессы в ионных кристаллах, пер. с англ., М., 1950; Адирович Э. И., Электрические поля и токи в диэлектриках, «Физика твердого тела», 1960, т. 2, в. 7, с. 1410; его же, Эмиссионные токи в твердых телах и диэлектрическая электроника, в сб.: Микроэлектроника, под ред. Ф. В. Лукина, в. 3, М., 1969, с. 393.
Э. И. Адирович.
Рис. 3. Структура триода с изолированным затвором.
Рис.1. Диэлектрический диод, называемый сандвич-структурой.
Рис. 2. Горизонтальный разрез диэлектрического триода со встроенной сеткой; n — полупроводник, обладающий электронной проводимостью; р — диэлектрик (высокоомный полупроводник с дырочной проводимостью), в который происходит эмиссия электронов; P+ — низкоомные области полупроводника с дырочной проводимостью, через которые электроны не проходят.
Диэлектрические измерения
Диэлектри'ческие измере'ния, измерения величин, характеризующих свойства диэлектриков в постоянном и переменном электрических полях. К Д. и. относятся измерения диэлектрической проницаемости e в постоянных и переменных полях, диэлектрических потерь, удельной электропроводности в постоянном электрическом поле, электрической прочности.
В случае твёрдых диэлектриков Д. и. часто сводятся к измерению ёмкости С плоского электрического конденсатора, между пластинами которого помещён исследуемый диэлектрик. По формуле
(d — толщина диэлектрического образца, S — площадь его боковой грани, k — коэффициент пропорциональности) находят диэлектрическую проницаемость e. В случае жидкостей и газов измеряют ёмкость системы электродов в вакууме (С0) и в данном веществе (Сe), а затем определяют e из соотношения: e = Сe/С0.
Методы измерения ёмкости и диэлектрических потерь различны для разных частот электрического поля. В постоянном поле и при низких частотах (десятые доли гц) ёмкость, как правило, определяют путём измерений зарядного или разрядного токов конденсатора с помощью баллистического гальванометра (рис. 1).
В области частот от десятых гц до 107 гц, помимо С, существенно измерение диэлектрических потерь, мерой которых является тангенс угла диэлектрических потерь tg d. С и tg d измеряют с помощью мостовых схем, в частности мостов Шеринга.