Рассказывают ученые - неизвестен Автор
Шрифт:
Интервал:
Закладка:
Подобно тому как из кольцевых магнитных линий можно создать замкнутую "трубку", в которой, как в бутылке воду, можно хранить плазму, в будущем, вероятно, удастся создать и "бутылку" для хранения античастиц. Сквозь невидимые магнитные стенки ни изнутри, ни снаружи не сможет прорваться ни одна заряженная частица. В таком "сосуде" можно будет безбоязненно хранить запасы античастиц, не опасаясь аннигиляции. Одним словом, человек научится экранировать вещество от антивещества. Но у нас-то речь идет о процессах, которые гипотетически должны были протекать за миллиарды лет до появления человека!
Альфвен предсказал вариант самопроизвольной взаимной экранировки облаков водорода и антиводорода. На границе соприкосновения таких облаков неизбежно возникает аннигиляция. Но бояться ее не нужно. Аннигилируя, атомы и антиатомы породят вихри фотонов и электронно-позитронных пар. Этот радиационный газ, подобно пару, подбрасывающему каплю воды на раскаленной плите, будет стремиться отбросить облака антиподов в разные стороны. Чем сильнее будет протекать аннигиляция, тем энергичнее будут силы расталкивания. Поэтому облака, едва успев войти в соприкосновение, разойдутся, как корабли, подгоняемые ветрами, дуюшими с разных сторон.
Таких облаков-антиподов в первоначальной плазме рождается великое множество. Мы нарочно взяли лишь одну пару, чтобы легче было разобраться в происходящих процессах. Далее начинается самое интересное. Магнитные поля в первичной плазме крайне слабы. При самом оптимистическом подсчете, они лежат в пределах 1 - 2 гаусс. Но чем слабее магнитное поле, тем слабее и ток в природном контуре плазменного сгустка. А это, в свою очередь, означает, что в космической сепарации участвует меньше частиц. По расчетам Альфвена и Клейна, магнитные поля средней силы способны разделить вещество и антивещество, общая масса которых соизмерима с массой звезды. Парадоксальный вывод!
Он означает, что даже наша вполне заурядная система могла возникнуть не из одного водородного облака, а только в процессе слипания нескольких таких облаков. Отсюда легко прийти к выводу, что даже в нашей Галактике половина звездных систем может состоять из антивещества! Астрономам придется много потрудиться, чтобы опровергнуть этот ошеломляющий вывод. Звездный свет не несет нам информации о веществе, которое его испускает. И может быть, даже ближайшие наши соседки Альфа Центавра и Тау Кита черпают свою энергию из синтеза антипротонов.
И все же, несмотря на то что электромагнитное излучение одинаково для вещества и антивещества, у нас есть определенные шансы распознать окружающие Солнечную систему антимиры. Конечно, если эти антимиры действительно существуют. Оставляя в стороне нейтринную астрономию, которая является делом будущего, коснемся так называемых фронтов. Мы употребили это название по аналогии с одноименным атмосферным явлением, наблюдающимся при столкновении холодных и теплых воздушных масс. Атмосферный фронт легко обнаружить по характерным шумам: воды, крикам птиц и животных. Аналогичло этому можно попытаться обнаружить анниги-ляционный фронт в космосе.
Поскольку на границе вещества и активе" щества кипят аннигиляционные битвы, то, как говорят астрономы, в "гамма-свете" соответствующие участки ночного неба не могут не выдать себя. Конечно, атмосфера задерживает рентгеновские излучения космоса. Но гамма-телескопы уже выводились с помощью спутников на околоземную орбиту. Первые такого рода опыты, правда, показали, что космический гамма-фон довольно однороден. Но окончательные выводы на основании этого делать нельзя. Потребуются еще десятки и сотни точных измерений. Да и гамма-телескопы еще не настолько совершенны, чтобы мы окончательно отказались от идеи существования "ближних" антимиров.
Впрочем, "роме гамма-астрономии есть еще одна возможность подтвердить или опровергнуть гипотезу шведских астрофизиков. Речь идет об особенностях аннигиляционных фронтов, на которые обратил внимание советский ученый Н. А. Власов. На короткое мгновение перед аннигиляцией частицы и античастицы образуют псевдоатомные структуры - прото-ний (протонно-антипротонная пара) и пози" троний (электронно-позитронная пара). Про-тоний и позитроний обладают избыточной энергией. Поэтому, прежде чем исчезнуть, они успевают испустить световые кванты. Вполне понятно, что квазиатомные структуры обладают строго определенными спектрами. На основании этого Н. А. Власов и предлагает изучить спектры всех даже самых слабых свечений в пространстве.
Прорыв к "началу"
Попробуем совершить мысленное путешествне к тем далеким временам, когда привычное для нас понятие "наблюдатель" теряет всякий смысл, когда не было ни галактик, ни звезд, ни планет, ни разума...
Ставя наш мысленный эксперимент, изберем для первого "посещения" прошлого Вселенной период, отделенный от "большого взрыва" двумя-тремя годами.
В этот период вещество Вселенной напоминало плазму. Оно представляло собой расширяющееся облако протонов, электронов и легких ядер (главным образом гелия), пронизанное гигантскими электромагнитными потоками всех степеней жесткости - от радиоволн до гамма-лучей. Излучение это, конечно, обладало равновесной с веществом температурой. Но температура по мере расширения быстро уменьшалась. "Выстрел" свершился - и горячие газы вырвались на простор... Поэтому через несколько тысяч лет после "взрыва" температура достигла вполне привычных для нас значений: 3000 - 4000°К [Буквой К обозначается температурная шкала Кельвина, в которой отсчет ведется от абсолютного нуля - минус 273,16 градуса по шкале Цельсия], а плотность вещества упала примерно до 10-20 г/см3. В этих условиях электроны уже могли соединяться с ядрами и образовывать первые в юной Вселенной легкие атомы - водородные, гелиевые и т. п. В такой среде излучение как бы "отрывается" от вещества, перестает испускаться и поглощаться. Температура этого излучения тоже быстро уменьшается.
Как известно, температура меняется обратно пропорционально расстоянию между любыми удаленными частицами расширяющегося объема, а плотность обратно пропорционально кубу этого расстояния. Вспомним, что плотность вещества в современной Вселенной достигает значения 10-29 г/см3. Поделив величину плотности вещества юной Вселенной - 10-20 на сегодняшнюю плотность - 10-29, мы получим величину 109. Это соответствует изменению расстояния в 103, или, говоря иными словами, радиус современной Вселенной в 1000 раз больше, чем той прежней, о которой идет речь. А это означает, что температура "оторвавшегося" излучения должна теперь быть в 1000 раз меньше, то есть соответствовать приблизительно 3°К.
Мысль о том, что такое излучение - "свидетель" первоначального "взрыва" - можно обнаружить в космосе, была высказана еще более 20 лет назад, но, как это часто бывает, ей не придали большого значения: идея была "чуточку" преждевременной. Зато поеле 1965 г., когда реликтовое излучение было открыто, все смогли оценить, насколько она была справедлива. Остается добавить, что температура этого излучения оказалась 2,7°К! Это был еще один триумф современной научной теории. Выяснилось, что разработайные советским ученым А. А. Фридманом в начале 20-х годов модели Вселенной не только качественно, но и количественно вполне реально описывали эволюцию мира. Столь же справедливой оказалась и гипотеза о "горячей" Вселенной.
Наиболее примечательное свойство реликтового излучения - его удивительная однородность, как говорят ученые, изотропность: со всех точек неба оно поступает к нам с одинаковой интенсивностью. И это тоже помогает ученым: ведь исследуя современный реликтовый фон и высчитывая, каким он был на более ранней стадии, можно заглянуть в прошлое Вселенной. Поэтому с полным на то основанием сегодня можно сказать, что в период "отрыва" излучения от вещества Вселенная была более или менее изотропной. Это очень важный вывод, хотя он и не дает нам права судить о более ранних стадиях, когда первичное облако не было "прозрачно" для излучений.
В первые секунды - а может быть, даже дни и годы после "взрыва" Вселенная могла быть сильно анизотропной, то есть обладать любыми неоднородностями. Но постепенно они сгладились, как складки на камере мяча после его накачки. При этом следует учесть также, что на пути к нам кванты реликтового излучения многократно рассеивались и "забывали" о своем далеком прошлом. Вот почему о более ранних стадиях жизни Вселенной мы можем только высказывать гипотезы. Однако не исключено, что об этих периодах нам когда-нибудь смогут рассказать реликтовые нейтрино и гравитационные волны, если ученые когда-нибудь сумеют их поймать.
И все же современная наука сумела совершить громадный прыжок в прошлое нашего мира! Если квазары позволили им приблизиться к моменту "большого взрыва" лишь на 2 миллиарда лет, то реликтовые кванты сократили этот срок до 300 тысяч лет. По сравнению с гигантским временем существования Вселенной это очень мало.