Черные дыры и складки времени. Дерзкое наследие Эйнштейна - Кип Торн
Шрифт:
Интервал:
Закладка:
Короче говоря, законы квантовой гравитации прячут от нас ответ на вопрос, можно ли успешно превратить червоточины в машины времени. Чтобы получить ответ, люди вначале должны понять законы квантовой гравитации.
У Хокинга было свое твердое мнение о машинах времени. Он считал, что природа их терпеть не может, и выразил эту «неприязнь» в виде гипотезы о защите хронологии. Гипотеза гласит, что законы физики запрещают существование машин времени. (Хокинг, с присущим ему юморком, характеризовал этот вывод так: «дабы сохранить этот мир для историков!»)
Хокинг подозревал, что рост пучка вакуумных флуктуаций — это способ, которым природа усиливает защиту хронологии: всякий раз, когда кто-то пытается создать машину времени, независимо от того, какой тип устройства используется при этой попытке (червоточина, вращающийся цилиндр,[145]«космическая струна»,[146] и т. д.), перед тем как это устройство превратится в машину времени, через это устройство начнет циркулировать пучок вакуумных флуктуаций и разрушит его. Хокинг готов был держать какое угодно пари по этому поводу.
У меня нет ни малейшего желания бросать ему вызов. Я получаю большое удовольствие от споров с Хокингом, но только от тех споров, в которых у меня большой шанс на победу. Я нутром чувствую, что этот спор проиграю. Наши с Кимом расчеты, а также неопубликованные расчеты, которые недавно сделал Иенна Фланаган (мой студент) говорят о том, что Хокинг, скорее всего, прав. Каждая машина времени, по-видимому, самоуничтожается (с помощью циркулирующих вакуумных флуктуаций) в момент ее активации. Однако мы этого до конца не узнаем до тех пор, пока физики не познают законы квантовой гравитации.
ЭПИЛОГ
Обзор наследия Эйнштейна, прошлое и будущее теории, основные действующие лица
Почти сто лет прошло с тех пор, как Эйнштейн разрушил концепцию «абсолютного» пространства и времени Ньютона и начал закладывать фундамент своей собственной теории. За истекшее столетие теоретическое наследие Эйнштейна выросло и включает теперь, в частности, понятие об искривленном пространстве-времени и целый ряд экзотических объектов, появившихся целиком и полностью на основе этого понятия: черные дыры, гравитационные волны, сингулярности (закрытые и обнаженные), кротовые норы и машины времени.
В разные эпохи развития науки физики отказывали каждому из этих объектов в праве на существование.
• В этой книге мы узнали, как Эддингтон, Уилер и даже Эйнштейн высказывали скептицизм по поводу черных дыр; Эддингтон и Эйнштейн умерли до того, как была доказана их неправота, а Уилер, в конце концов, стал их приверженцем и защитником.
• В 1940—50-х годах многие физики, ошибочно интерпретировавшие уравнения общей теории относительности, были очень скептично настроены в отношении существования гравитационных волн (рябь кривизны). Но это история для другой книги, а скептицизма уже нет.
• Для многих физиков было (и остается) ужасным шоком открытие, что сингулярности являются неизбежным следствием законов общей теории относительности Эйнштейна. Некоторые физики испытывают комфорт оттого, что верят в гипотезу Пенроуза о «космической цензуре» (согласно которой все сингулярности должны быть закрыты, голые сингулярности запрещены). Независимо от того, существует или нет космическая цензура, большинство физиков привыкли к сингулярностям и, подобно Уилеру, считают, что там действуют непонятные законы квантовой гравитации, которые управляют этими сингулярностями и контролируют их так же, как законы гравитации Ньютона или Эйнштейна управляют планетами и контролируют их движение по орбитам вокруг Солнца.
• Большинство физиков сегодня считают вопиющим предположение о том, что могут существовать червоточины и машины времени, хотя общие законы относительности Эйнштейна допускают их существование. Скептично настроенных физиков может отчасти успокоить недавно возникшее представление о том, что существование червоточин и машин времени может отвергаться не «мягкими» законами Эйнштейна, а более «суровыми» законами квантовых полей в искривленном пространстве-времени и законами квантовой гравитации. Когда мы лучше поймем эти законы, возможно, из них недвусмысленно будет следовать, что они всегда защищают Вселенную от червоточин и машин времени. Или, возможно по крайней мере, от машин времени.
Что можно ожидать в ближайшие сто лет — за второй век существования теории Эйнштейна?
Похоже, наши представления о пространстве, времени и объектах, существование которых основано на искривлении пространства-времени, претерпят не менее революционные изменения, чем за прошедшее столетие. Предпосылки для этой революции следующие:
• Гравитационно-волновые детекторы позволят нам вскоре наблюдать черные дыры и «услышать» их столкновения. Можно будет записать целые симфонии и получить ценную информацию о том, как ведет себя бешено пульсирующее искривленное пространство-время. Моделирование на суперкомпьютерах позволит воспроизводить эти симфонии с тем, чтобы раскрыть их тайну. Черные дыры станут объектами детального экспериментального исследования. Что мы узнаем в результате этого исследования? Здесь возможны сюрпризы.
• В течение ближайших ста лет — и вероятно, этого не так долго осталось ждать — кто-нибудь откроет законы квантовой гравитации и детально их исследует.
• Владея законами квантовой гравитации, мы сможем точно понять, как появились пространство и время в нашей Вселенной, как они возникли из квантовой пены и сингулярности Большого взрыва. Мы сможем понять смысл часто задаваемого и кажущегося бессмысленным вопроса: «Что было до Большого взрыва?» Мы сможем узнать, действительно ли из квантовой пены рождается много вселенных, как разрушается пространство-время в сингулярном ядре черной дыры и в Большом хрусте, как и где пространство и время вновь воссоздаются (если это действительно происходит). Мы также сможем понять, разрешены или запрещены машины времени законами квантовой гравитации, и всегда ли машины времени саморазрушаются в момент их возникновения?
• Законы квантовой гравитации не являются конечным этапом эволюции физических законов на пути от законов Ньютона к специальной теории относительности, к общей теории относительности, к квантовой теории и, наконец, квантовой гравитации. Законы квантовой гравитации необходимо увязать с другими законами, которые проявляются в основных фундаментальных взаимодействиях природы: электромагнитном, сильном и слабом. Возможно, в ближайшие сто лет мы поймем, как объединить все эти законы — скорее всего, не так долго осталось ждать. Это объединение может радикально изменить наше представление о Вселенной. И что тогда? Никто не может сегодня предсказать, что будет дальше. Тем не менее, это может произойти еще при моей и при вашей жизни.
Заключение (Ноябрь 1993 г.)
Альберт Эйнштейн провел большую часть из последних 25 лет своей жизни в безуспешных попытках объединить свои законы общей теории относительности с законами электродинамики Максвелла. Он не понял, что для создания единой теории необходимо учитывать законы квантовой механики. Эйнштейн умер в Принстоне, штат Нью-Джерси, в 1955 г. в возрасте семидесяти шести лет.
Субраманьян Чандрасекар (сейчас ему семьдесят три года) продолжает изучать секреты уравнения поля Эйнштейна. Часто ему помогают в этом молодые коллеги. В последние годы он научил нас многому новому о пульсациях звезд и столкновениях гравитационных волн.
Фриц Цвикки в последние годы научной деятельности все более превращался из теоретика в астронома-наблюдателя. Он обладал даром предвидения и все время генерировал новые идеи дискуссионного характера, которые, однако, выходят за рамки этой книги. В 1968 г. Цвикки оставил профессорскую должность, которую он занимал в Калифорнийском технологическом институте, и уехал в Швейцарию. Там он провел последние годы жизни, в течение которых развивал свой собственный метод познания, так называемый «морфологический метод». Цвикки умер в 1974 г.
Лев Давидович Ландау смог интеллектуально (но не эмоционально) оправиться после того, как год провел в тюрьме (1938–1939), и продолжал свои занятия наукой и преподавательской деятельностью; был уважаем и почитаем советскими физиками-теоретиками. В 1962 г. он серьезно пострадал в автокатастрофе, и его мозг так полностью и не восстановился. Он стал совершенно другим человеком и не мог уже полноценно заниматься физикой. Ландау умер в 1968 г., но его ближайшие друзья говорили впоследствии: «Для нас Дау умер в 1962 г.»
Яков Борисович Зельдович на протяжении 1970-х и 1980-х годов оставался наиболее влиятельным астрофизиком в мире. В 1978 г. в результате трагического межличностного конфликта в его группе (без преувеличения, самой мощной группе астрофизиков-теоретиков в мире) произошел разрыв. Попытки Зельдовича создать новую группу сотрудников из молодых ученых оправдались лишь частично. В 1980-х годах он был ведущим астрофизиком и космологом в мире. Зельдович умер от сердечного приступа в Москве в 1987 г., вскоре после своей первой поездки в Америку, ставшей возможной в результате политических изменений, предпринятых Горбачевым.