Категории
Самые читаемые
RUSBOOK.SU » Научные и научно-популярные книги » Физика » Гиперпространство - Каку Митио

Гиперпространство - Каку Митио

Читать онлайн Гиперпространство - Каку Митио

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 8 9 10 11 12 13 14 15 16 ... 96
Перейти на страницу:

В целом жизнь Римана была непрерывной чередой препятствий и бед, преодолевать которые удавалось с огромным трудом и напряжением и без того небольших сил. За каждым триумфом следовали фиаско и трагедия. Едва фортуна улыбнулась ему и он приступил к учебе у Гаусса, как Германию захлестнула волна революции. Рабочий класс, долго терпевший нечеловеческие условия жизни и труда, восстал против правительства, рабочие городов по всей Германии взялись за оружие. Эти демонстрации и волнения начала 1848 г. стали источником вдохновения для еще одного известного гражданина Германии — Карла Маркса и оказали заметное влияние на развитие революционного движения в Европе в последующие годы.

Когда волнения охватили всю Германию, учеба Римана прервалась. Его зачислили в студенческий отряд, где он удостоился сомнительной чести в течение 16 утомительных часов охранять особу, напуганную гораздо сильнее ее охранников, — короля, который трясся от страха в своем берлинском дворце, пытаясь укрыться от гнева рабочего класса.

За рамками евклидовой геометрии

Революционные бури бушевали не только в Германии, но и в сфере математики. Вопросом, которым заинтересовался Риман, стало неизбежное падение еще одного бастиона, авторитет которого ранее был непререкаем, — евклидовой геометрии, рассматривающей пространство как трехмерное. Более того, это пространство не только трехмерное, но и «плоское» (на плоскости кратчайшее расстояние между двумя точками — прямая; исключается сама возможность, что пространство может быть изогнутым, как в случае со сферой).

Пожалуй, евклидовы «Начала» можно назвать наиболее влиятельной (после Библии) книгой всех времен. На протяжении двух тысячелетий проницательнейшие умы западной цивилизации восхищались ясностью мысли и красотой геометрических построений. Тысячи прекрасных соборов Европы были воздвигнуты согласно принципам этой книги. Оглядываясь назад, можно отметить, что успех «Начал» был чересчур велик. С течением веков она стала своего рода религией; к каждому, кто осмеливался предложить искривленное пространство или многомерность, относились как к безумцу или еретику. Бесчисленные множества поколений школьников сражались с теоремами евклидовой геометрии: длина окружности в π раз превосходит ее диаметр, сумма углов треугольника составляет 180°. Но как ни бились веками самые светлые умы математики, им не удавалось найти доказательства обманчиво простых постулатов. В конце концов до европейских математиков начало доходить, что даже евклидовым «Началам», чтимым на протяжении 2300 лет, недостает полноты. Евклидова геометрия по-прежнему приемлема, если речь идет о плоских поверхностях, но в мире изогнутых поверхностей она неверна.

С точки зрения Римана, евклидова геометрия особенно бесплодна, если ее сравнить с поразительным многообразием мира. Нигде в природе мы не встречаем плоских, идеальных геометрических фигур Евклида. Горные цепи, океанские волны, облака, водовороты — отнюдь не правильные круги, треугольники и квадраты, а объекты с криволинейными поверхностями, количество изгибов которых поражает бесконечным разнообразием.

Время для революции наступило. Но кто возглавит ее и что придет на смену прежней геометрии?

Появление римановой геометрии

Риман восставал против мнимой математической точности греческой геометрии, фундамент которой, как он обнаружил, покоится на зыбучих песках интуиции и здравого смысла, а не на твердой почве логики.

Согласно Евклиду, у точки вообще нет измерения. У линии одно измерение — длина. У плоскости — два: длина и ширина. У тела — три: длина, ширина и высота. На этом все и заканчивается. Нет ничего, что имело бы четыре измерения. Эти утверждения эхом повторял философ Аристотель, вероятно, первым в мире категорически заявивший, что четвертое пространственное измерение невозможно. В трактате «О небе» он писал: «Величина, делимая в одном измерении, есть линия, в двух — плоскость, в трех — тело, и, кроме них, нет никакой другой величины, так как три суть все». Более того, в 150 г. н. э. астроном Птолемей из Александрии пошел дальше Аристотеля и в своем труде «О расстояниях» предложил первое оригинальное «доказательство» невозможности четвертого измерения.

Сначала, предлагал он, проведем три взаимно перпендикулярные линии. Например, угол куба представляет собой три линии, перпендикулярные друг другу. Затем попробуем провести четвертую линию, перпендикулярную остальным трем. Как бы мы ни старались, утверждает Птолемей, провести четвертый перпендикуляр невозможно. По мнению Птолемея, четвертую перпендикулярную линию «нельзя измерить и определить». Таким образом, четвертое измерение невозможно.

В действительности же Птолемей доказал невозможность визуализировать четвертое измерение с помощью нашего трехмерного мозга (сегодня нам уже известно немало объектов математики, которые нельзя представить, однако их существование можно доказать). Птолемей мог бы войти в историю как человек, противостоявший двум великим идеям в науке: гелиоцентрической Солнечной системе и четвертому измерению.

За прошедшие с тех пор века появлялось немало математиков, с пеной у рта отвергавших четвертое измерение. В 1685 г. Джон Уоллис (Валлис) высказывался против этой концепции, называя ее «Чудовищем в мире природы, еще менее возможным, чем химера или кентавр… Длина, ширина и высота исчерпывают пространство. Никакому воображению не под силу представить четвертое пространственное измерение помимо этих трех»[11]. В течение нескольких тысяч лет математики повторяли эту роковую ошибку: что четвертое измерение не существует по той причине, что мы не в состоянии вообразить его себе.

Единство всех физических законов

Решительное отступление от евклидовой геометрии произошло, когда Гаусс поручил студенту Риману подготовить доклад об «основах геометрии». Гаусс всерьез заинтересовался вопросом, сумеет ли его ученик разработать альтернативу евклидовой геометрии. (За несколько десятилетий до этого Гаусс сам в личных беседах выражал всяческие сомнения относительно евклидовой геометрии. Он даже упоминал в разговорах с коллегами гипотетических «книжных червей», живущих исключительно в двумерном пространстве. Он говорил, что это распространяется на геометрию многомерного пространства. Но будучи крайне консервативным человеком, Гаусс никогда не публиковал своих работ по многомерности, зная, какой взрыв негодования они вызовут у ограниченной, реакционно настроенной «старой гвардии». Гаусс презрительно окрестил их «беотийцами» — по названию одной из народностей Греции, представителей которой считали умственно недоразвитыми[12].)

Риман был в ужасе. Этого застенчивого, робкого человека, впадающего в панику при мысли о публичных выступлениях, наставник попросил прочитать перед целым факультетом доклад об одной из самых сложных математических проблем столетия.

Следующие несколько месяцев Риман усердно разрабатывал теорию многомерности, напрягая все свои силы и находясь на грани нервного срыва. И без того плачевное положение усугублялось финансовыми проблемами. Чтобы обеспечивать близких, ему приходилось заниматься низкооплачиваемым репетиторством. Кроме того, Риман был вынужден отвлекаться на поиски объяснения физических проблем. Особенно часто он помогал профессору Вильгельму Веберу проводить эксперименты в новой увлекательной сфере — исследованиях электричества.

Конечно, электричество было известно и в древности — в виде искр и молний. Но в начале XIX в. это явление заняло центральное место в исследованиях физиков. В частности, внимание ученых привлекло то, что при прохождении тока по проводу, лежащему поверх компаса, стрелка компаса приводится в движение. И наоборот: движение магнитного стержня относительно провода может вызвать возникновение электрического тока в проводе. (Это явление называется законом Фарадея, на его принципах основаны все современные электрогенераторы и трансформаторы, следовательно, во многом он определяет основы современной техники и технологии.)

1 ... 8 9 10 11 12 13 14 15 16 ... 96
Перейти на страницу:
На этой странице вы можете бесплатно скачать Гиперпространство - Каку Митио торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит