Юный техник, 2003 № 01 - Журнал «Юный техник»
Шрифт:
Интервал:
Закладка:
Жители Севера умеют быстро складывать из снежных кирпичей хижины-иглу. Когда хижина готова, в ней зажигают свечу, и стенки ее покрываются тонкой корочкой льда. В таком снежно-ледяном доме достаточно тепло, чтобы переждать самую сильную пургу. (Разумеется, для этого нужно иметь не нашу одежду, а такую, как у народов Севера.) А русские цари иногда устраивали праздники в ледяных домах (рис. 2).
Рис. 2. Если полить на морозе водой простыню, ее можно превратить в ледяной купол.
Но вернемся к технике. Специалисты знают, как трудно шлифовать оптическое стекло. Если вращать шлифовальный круг с большой скоростью, стекло в отдельных местах перегревается, расширяется и трескается. Нужно либо снижать скорость обработки, либо охлаждать инструмент водой. А это не так просто: при больших скоростях вращения центробежная сила выбрасывает жидкость, и стекло фактически шлифует сухой камень.
В конце 60-х годов прошлого века в нашей стране было предложено и внедрено оригинальное решение. В воду добавили мельчайший наждачный порошок, а потом заморозили в форме (рис. 3).
Рис. 3. Обработка стеклянной линзы ледяным шлифовальным кругом.
Получился высокоскоростной шлифовальный круг, который ни при каких обстоятельствах не может перегреть стекло. Ведь при его работе в месте нагрева выделяется вода. При непрерывной работе ледяной шлифовальный круг служит один-два часа. Ровно столько же, сколько обычный скоростной наждак.
Удивительно, но лед нашел применение и в литейном деле, где существует важная проблема. Литейную форму часто делают из земли, добавляя в нее связующие вещества. Смесь, казалось бы, недорогая, но готовят ее сотнями тысяч тонн в год. Поэтому малейшее удешевление ее состава может принести ощутимую экономию. И вот двадцать лет назад американцы додумались делать формы из влажной, а затем сильно промороженной земли. Ее прочности хватает лишь на то, чтобы залитый металл успел затвердеть. После этого она постепенно оттаивает и превращается в кучу земли, из которой легко вынуть изделие. Это очень важно, поскольку обычно форму для этого нужно разнимать или разбивать, а затем выбрасывать. Здесь же одну и ту же землю можно использовать неограниченное количество раз.
Иногда требуется аккуратно, без складок, изогнуть тонкую трубку. Чтобы на ней не образовались складки, иногда рекомендуют налить в нее свинец или насыпать песок. Если трубка длинная, сделать это не просто. Но есть хорошее решение. Трубку заливают водой, затыкают пробками и выставляют на мороз. Когда вода замерзнет, трубку можно гнуть как угодно — складок не будет!
Способность воды расширяться при замерзании, создавая очень высокое давление, известна всем. И это тоже может быть полезно. Например, при производстве бойлеров.
Бойлер, напомним, это широкая труба, внутри которой расположен пучок тонких трубочек. По ним течет водопроводная вода, а горячая вода омывает их снаружи. Каждая тонкая трубка надежно закреплена в своем гнезде. Эту очень точную и трудоемкую работу выполняют, подавая в них воздух под высоким давлением либо при помощи специального (рис. 4) инструмента.
Рис. 4. Устройство бойлера.
Но есть более простой способ. Все трубки закрывают специальными заглушками, наполняют водой и выставляют на мороз. Вода замерзает, и лед равномерно расширяет все трубки, намертво закрепляя их в своих гнездах.
Напоследок расскажем о небольшом приборе, который предложил наш читатель Н.В. Безбородов. Он предназначен для поддержания температуры, близкой к 0 °C, в ящике для хранения овощей. Обычно для домашних хранилищ используют шкафы от старых холодильников. В такой шкаф устанавливают обычную лампу накаливания и тепловое реле. Оно включает лампу, как только температура опускается ниже нуля, и она согревает емкость. Как только температура в шкафу превысит 0°, реле отключает лампу.
Конструкций таких реле можно много найти в литературе, но наш читатель прислал, пожалуй, самое простое решение, которое вы можете повторить. Николай Васильевич предложил воспользоваться небольшой пластиковой бутылью с водой (рис. 5).
Рис. 5. Тепловое реле для поддержания нулевой температуры. Образующийся в пластиковой бутылочке лед расширяет ее стенки, и они давят на кнопку концевого выключателя. Лампа загорается.
При замерзании воды бутыль расширяется и замыкает контакты (в их качестве можно использовать микропереключатель, рассчитанный на нужную вам нагрузку). Лампа включается. Постепенно температура повышается настолько, что лед начинает таять. Контакты размыкаются. Детали устройства видны на рисунке. Желаем успеха!
С. ФЕДОРОВ
Рисунки автора
СДЕЛАЙ ДЛЯ ШКОЛЫ
Мир в звуковом цвете
Люди и животные видят мир по-разному. Собаки и кошки, например, воспринимают его однотонным черно-белым, бабочки видят не только все цвета радуги, но еще ультрафиолетовые и, возможно, даже — инфракрасные цвета. И пусть они видят мир не очень четко, словно в тумане, туман этот наполнен немыслимым, непереводимым на язык наших чувств разнообразием красок! Увы, сравниться с бабочкой в широте диапазона зрения нам пока не помогут даже тончайшие физические приборы. Но даже в школьной физической лаборатории можно попробовать сымитировать зрение в ультразвуковом диапазоне.
Ультразвук — это не слышимые ухом человека звуки с частотой более 20 тысяч колебаний в секунду. Наивысшая частота звуков летучих мышей достигает ста тысяч колебаний в секунду. Отражаясь от различных препятствий, эти звуки достигают ушей животных и помогают им ориентироваться в полной темноте.
Почему мыши применяют для этого именно ультразвук, а не звуки обычные? Все дело в длине волны. Она равна скорости звука в данной среде, деленной на его частоту. Подсчитав, получаем, что летучие мыши испускают звуки с длиной волны от 3,3 до 16,5 мм. Столь короткие волны способны отражаться от самых мелких бабочек и мошек, составляющих меню этих животных.
Звук, как и свет, — явление волновое. Поэтому для звука, как и для света, можно использовать зеркала, призмы и линзы.
Собиратели птичьего пения, например, пользуются вогнутым металлическим зеркалом, в фокусе которого устанавливают микрофон. Устройство позволяет собрать в пучок и выделить звук голоса единственной нужной птицы из целой стаи.
Аналогичные приборы применяются и в военном деле (рис. 1). Но из-за большой длины звуковых волн размеры устройств, собирающих звуки, получаются большими.
Несравненно лучше удается это с коротковолновым ультразвуком. В воде ультразвук можно собирать и рассеивать при помощи линз из обычного оргстекла, похожих по форме на оптические линзы.
В годы Первой мировой войны французский ученый Поль Ланжевен создал прибор для обнаружения подводных лодок при помощи ультразвука. Его излучала пластинка с двумя посеребренными гранями, особым образом вырезанная из кристалла кварца. Когда к этим граням прикладывали переменное напряжение высокой частоты, возникал пьезоэлектрический эффект. Пластина начинала колебаться, сжимаясь и разжимаясь по толщине.
С ее помощью в воде удавалось получить звуки с длиной волны в несколько мм. Пучок ультразвуковых волн, отразившись от подводной лодки, возвращался и попадал на другую такую пластину, заставляя ее колебаться. На ее посеребренных гранях возникало переменное напряжение, которое регистрировалось после усиления.
Обработать нужным образом кристалл кварца, да еще и посеребрить его торцы было бы сложно. Поэтому для опыта лучше использовать так называемый магнитострикционный эффект. Заключается он в том, что под действием изменения величины магнитного поля, направленного вдоль ферритового стержня, стержень меняет свою длину. Простейший излучатель ультразвука можно получить из стержня длиною 110–120 мм. Основная частота его механического резонанса примерно 23 кГц, что соответствует длине волны звука в воде — 60 мм. Этого достаточно для демонстрации; правда, предметы с размером меньше половины длины волны (30 мм) различить не удастся.
Если на ферритовый стержень в один слой виток к витку намотать до заполнения обмотку проводом ПЭЛ-0,8 и пропустить по ней ток от низкоомного выхода звукового генератора, то колебания стержня с собственной резонансной частотой (23 кГц) начнутся при частоте тока 11,5 кГц. Это объясняется тем, что удлинение стержня зависит только от амплитуды магнитного поля катушки, а не от его полярности. Амплитуда же переменного тока за один период возрастает дважды.