Боевые корабли мира на рубеже XX XXI веков. Часть I. Подводные лодки - Ю.И. Александров
Шрифт:
Интервал:
Закладка:
По архитектуре "универсальная АПЛ" будет существенно отличаться от АПЛ IV поколения.
По мнению,российских ученых, 10-12 таких "универсальных АПЛ", при условии обеспечения быстрой замены основного оружия и поддержания боеготовности порядка 80% (в том числе боеготовность в базе), будут представлять достаточно грозную силу чтобы заставить любого противника отказаться от агрессивных действий против России.
Задача создания таких АПЛ не содержит каких-либо неразрешимых научных или технических проблем. Главной (но решаемой) проблемой является создание взаимозаменяемых комплексов оружия. Большая же часть технических решений вполне может быть взята со строящихся в настоящее время АПЛ IV поколения.
Неатомные подводные лодки
В настоящее время 44 страны имеют в составе своих ВМС ПЛ с неатомными ЭУ. Однако, научно-техническим и промышленным потенциалом для проектирования и строительства ПЛ обладают не более 10 стран.
Учитывая, что рынок потенциальных контрактов оценивается в 65-125 кораблей для 32 стран, в будущем неатомные ПЛ могут являться устойчивой статьей экспорта. Главными экспортерами (по заключенным сделкам) являются Германия, Россия, Франция и Швеция. Продвигают свои проекты на рынок Нидерланды и Китай. Наиболее вероятно, что страны с большими финансовыми или политическими амбициями будут стараться приобрести ПЛ с АНЭУ (как это имеет место сейчас с Пакистаном и Грецией), более дорогие, но и более эффективные в боевом отношении за счет резкого возрастания дальности плавания (рис. 6-7).
Перспективные неатомные ПЛ будут представлять из себя многоцелевые подводные лодки, но с меньшими, чем у атомных ПЛ возможностями, в том числе из-за более жестких ограничений по водоизмещению.
Неатомные ПЛ можно разделить на две группы:
- прибрежного действия - водоизмещением 400-1200 т;
- океанские - водоизмещением 1400-3000 т.
Неатомные ПЛ прибрежного действия, которые должны сохранять боевую устойчивость при выполнении маневра уклонения на мелководье, ограничены в размерениях и водоизмещении. Поэтому на них, в принципе, должно стоять большее количество ТА (порядка 8) без перезарядки, либо с весьма ограниченным запасом торпед.
Стоимость атомных ПЛ в ценах 1995 г.
УРОВНИ ПОДВОДНОГО ШУМА ДИЗЕЛЬ-ЭЛЕКТРИЧЕСКИХ ПЛ
Отношение эфективность/стоимость
Сравнительные оценки АнЭУ по 4-бальной шкале
Схематический продольный разрез ПЛ проекта 636 с вспомогательной АнЭУ (ЭХГ)
Океанские ДПЛ имеют большое количество запасных торпед (обычно 12-18 ед.) и меньшее число ТА (4-6).
Оружием неатомных ПЛ являются ПКР торпеды и мины. Причем для увеличения запаса последних используются навесные минные контейнеры.
Для ДПЛ, решающих противолодочные задачи, характерны более высокая скорость полного подводного хода (20-23 уз) и соответственно необходимость размещения большего количества АБ. Противолодочные задачи характерны для ПЛ Норвегии и Японии.
Численность экипажа ДПЛ за счет применения средств автоматизации, в первую очередь АСБУ, снижается, составляя примерно один чел. на 50 т водоизмещения. ПЛ большего водоизмещения могут оснащаться спасательными камерами.
Наконец, использование воздухонезависимой ЭУ, как правило вспомогательной, характерно, в первую очередь, для ПЛ, которые должны действовать в районах с малой протяженностью морских переходов и повышенной потенциальной опасностью обнаружения.
Требования к скрытности неатомных ПЛ в ряде случаев должны быть жестче, чем для АПЛ. Неатомные ПЛ, в принципе, могут достичь меньших уровней шумности по сравнению с атомными ПЛ. В условиях же мелководья, обнаружение малошумных неатомных ПЛ пассивными акустическими методами будет затруднено еще в большей степени. Отсюда стремление использовать для обнаружения таких ПЛ активные низкочастотные ГАС и обеспечить скрытность перспективных ПЛ, за счет конструктивных мероприятий в том числе использование корпуса нетрадиционной архитектуры, и внедрить в тактику использования ПЛ методы, учитывающие гидрологические характеристики районов и вероятные модели силы цели ПЛ. Для уменьшения силы цели при облучении высокочастотными ГЛС используются акустические покрытия.
Действие неатомных ПЛ в районах с малыми глубинами ужесточает требования к уровням магнитного поля, которые зависят водоизмещения материала корпуса, глубины хода ПЛ и пр.
В Германии с этой целью для Балтийского моря строились ПЛ из немагнитной стали, в России накоплен богатый опыт использования титана. С той же целью ограждения ПМУ и части наружного корпуса изготавливаются из стеклопластика.
Средства обнаружения неатомных ПЛ скомплексированы, как и управление оружием, в АСБУ Состав ГАК: ГАС с развитыми пассивными бортовыми антеннами двух видов - общего обнаружения и ОГС (в широкой и узкой полосе) и пассивного определения дистанции; носовые ГАС (как правило, пассивные, с конформными или цилиндрическим антеннами, использующимися также и в качестве приемных антенн ГАС), станции ОГС, звукоподводной связи и ГАС с ГПБА
В целом, за исключением японских ДПЛ, противолодочные задачи которых определили установку на них гидроакустических комплексов, подобных ГАК американских АПЛ, требования к комплексам ДПЛ вырабатываются исходя из решения ПЛ противокорабельных задач.
Заключение
Из проведенного анализа видно, что несмотря на серьезные изменения в геополитической картине мира, ведущая роль военно-морских флотов, как важнейших элементов военного потенциала и инструмента политики, не только не уменьшилась, а возросла. Соответственно возросла и значимость важнейшего компонента военно-морского флота - подводных лодок.
Важнейшим компонентом стратегических ядерных сил являются атомные стратегические подводные ракетоносцы. Причем у Великобритании и Франции, они являются единственным видом стратегических сил.
Многоцелевые подводные лодки превратились в универсальные корабли, способные вести боевые действия как в открытом океане, так и в прибрежных водах, наносить удары по береговым целям участвовать в специальных операциях.
При создании перспективных многоцелевых АПЛ основное внимание уделяется совместимости их действий с другими родами ВМС, а также совершенствованию средств наблюдения и разведки, оружия, автоматизации процессов управления.
Подводные лодки с неатомной энергетикой, оснащенные анаэробными вспомогательными энергетическими установками и крылатыми ракетами, становятся эффективным средством контроля прибрежных вод, сдерживания потенциально более сильных флотов, а в случае оснащения их крылатыми ракетами с ядерными боеголовками, - и региональными морскими стратегическими ядерными силами.
Развитие и совершенствование подводных флотов опирается на опережающее развитие науки, все более активное внедрение передовых технологий.
Россия обладает мощным научным, и проектно-конструкторским потенциалом, многолетним опытом проектирования, строительства и эксплуатации ПЛ,, квалифицированным личным составом подводного флота, подводными лодками, не уступающими, а по ряду характеристик и превосходящими лучшие ПЛ мира. У нас есть все возможности и впредь оставаться одним из лучших подводных флотов мира
Список сокращений
ААССН акустическая активная система самонаведения;
АБ аккумуляторная батарея;
АНЭУ анаэробная энергетическая установка;
АПЛ атомная подводная лодка;
АРЛГСН активная радиолокационная головка самонаведения;
АСБУ автоматизированная система боевого управления;
АТГ автономный турбогенератор;
АЭУ атомная энергетическая установка;
БГ боеголовка;
БИУС боевая информационно-управляющая система;
БНК боевой надводный корабль;
БР баллистическая ракета;
БЧ боевая часть;
ВВР водо-водяной реактор;
ВМС военно-морские силы;
ВМФ военно-морской флот;
ВСК всплывающая спасательная камера;
ВУ выдвижные устройства;
ГАК гидроакустический комплекс;
ГАС гидроакустическая станция;
ГВ гребной винт;
ГПБА гибкая протяженная буксируемая антенна;
ГСН головка самонаведения;
ГМП государственное машиностроительное предприятие;
ГТЗА главный турбозубчатый агрегат;
ГР горизонтальные рули;
ГЭД гребной электродвигатель;
ГЭД ЭХ гребной электродвигатель экономического хода;
ДГ дизель-генератор;
ДЗЦ дизель, работающий по замкнутому циклу;
ДП диаметральная плоскость;
ДПЛ дизель-электрическая подводная лодка;
ДЭУ дизель-электрическая энергетическая установка;
ЖРД жидкостный ракетный двигатель;