Черные дыры и складки времени. Дерзкое наследие Эйнштейна - Кип Торн
Шрифт:
Интервал:
Закладка:
14.1. Червоточина длиной в 1 км через гиперпространство, соединяющая Землю с окрестностью Веги, расстояние до которой составляет 26 световых лет (масштабы на рисунке не соблюдены)
На рис. 14.1 изображена такая червоточина. Здесь наша трехмерная Вселенная представлена в виде двумерного листа (см. рис. 3.2 и 3.3). Подобно муравью, ползущему по листу бумагу, который не ощущает кривизны листа, так же и мы в нашей Вселенной не чувствуем ее кривизны в гиперпространстве. Однако даже незначительная кривизна важна; она позволяет Земле и Веге быть рядом друг с другом в гиперпространстве, так что их связывает короткая червоточина. И тогда мы подобно муравью или червяку, ползущему по двумерному листу, имеем два возможных пути с Земли на Вегу: длинный, через внешнюю Вселенную длиною двадцать шесть световых лет, и короткий, через червоточину длиной один километр.
Что представляло бы собой устье червоточины, если бы оно находилось на Земле, прямо перед нами? На двумерном изображении Вселенной оно представлено в виде круга; следовательно, в нашей трехмерной Вселенной оно было бы трехмерным аналогом круга, т. е. сферой. По сути дела, такое устье напоминало бы сферический горизонт событий невращающейся черной дыры, но с одним важным исключением: горизонт — это путь с односторонним движением; все что угодно может попасть внутрь, но ничего не может выйти наружу. Напротив, устье червоточины — дорога с двусторонним движением; мы можем ехать по ней в обе стороны: внутрь норы и наружу во внешнюю Вселенную. Заглянув в это сферическое отверстие, мы увидим свет от Веги, который прошел через туннель как через световую трубку или через оптическое волокно и вышел рядом с Землей.
Червоточины — это не просто плод воображения писателей-фантастов. Они были открыты математически Людвигом Фламмом в 1916 г. как решение уравнения поля Эйнштейна всего лишь через несколько месяцев после того, как Эйнштейн сформулировал это уравнение. В 1930-х годах их исследованием занимались Эйнштейн и Натан Роузен, а в 1950-х — Джон Уилер со своей группой, которые проделали много математических расчетов. Но ни одна из таких червоточин, найденных в результате решения уравнения Эйнштейна, не годилась для книжки Карла Сагана, потому что не была безопасна для путешествия. И так было до моей поездки в 1985 г. по 5-й автостраде. До этого момента считалось, что червоточины ведут себя весьма своеобразным образом: они появляются на короткое время, а затем схлопываются и исчезают. Их полное время жизни от момента возникновения до исчезновения настолько мало, что никто и ничто (ни человек, ни излучение, ни какой бы то ни было сигнал) не в состоянии преодолеть туннель от одного устья до другого. Любая попытка пройти через туннель закончится ничем: все будет разрушено в момент его исчезновения. Простой пример этому дан на рис. 14.2.
Как и большинство моих коллег-физиков, я долгое время был скептически настроен по отношению к червоточинам. И не только потому, что из уравнения поля Эйнштейна следует, что червоточина, предоставленная сама себе, имеет короткий срок жизни; случайно попадающее в них излучение еще более укорачивает этот срок. В соответствии с расчетами Дуга Эрдли и Яна Редмаунта, излучение ускоряется до сверхвысоких энергий силами гравитации червоточины; это излучение бомбардирует ее устье, заставляя его сжиматься и стягиваться еще быстрее. Таким образом, червоточина имеет вообще очень мало шансов на существование.
Была еще одна причина для скептицизма. В то время как черные дыры представляют собой неизбежное следствие звездной эволюции (они возникают в результате коллапса массивных, медленно вращающихся звезд, которые в изобилии содержатся в нашей галактике), аналогичного механизма образования червоточин естественным путем не существует. По сути дела, нет никакого основания предполагать, что в нашей Вселенной сегодня есть какие-либо сингулярности, которые могут привести к образованию червоточин (рис. 14.2); если бы такие сингулярности существовали, трудно понять, как две из них могли бы найти друг друга в бескрайнем гиперпространстве, чтобы образовать червоточину на манер той, какая изображена на рис. 14.2.
* * *
Когда одному из друзей нужна помощь, мы готовы перевернуть мир. Червоточины — несмотря на мой скептицизм по их поводу — только они одни могли помочь Карлу. Возможно, пришло мне в голову на 5-й автостраде к западу от Фресно, некая очень высокоразвитая цивилизация нашла способ держать червоточину открытой, т. е. не давать ей схлопываться, так что Элеанора Эрроувэй сможет путешествовать по ней от Земли до Веги и обратно. Я вытащил ручку и бумагу и начал вычислять. (К счастью, пятерка — очень прямой хайвэй, и я мог без труда делать расчеты.)
14.2. Эволюция совершенно сферической червоточины, внутри которой нет вещества. (Эта эволюция — результат решения уравнения поля Эйнштейна, полученного в середине 1950-х годов Мартином Крускалом, молодым сотрудником Уилера в Принстонском университете.) (д) Вначале червоточины нет. Вместо этого существует одна сингулярность возле Земли и другая — возле Веги. Затем, в некоторый момент времени (б), обе сингулярности дотягиваются друг до друга через гиперпространство, находят друг друга и аннигилируют друг в друге. В результате этой аннигиляции возникает червоточина. Поперечный размер ее растет (в), затем начинает сжиматься (г) и стягивается в точку (д), создавая две сингулярности (е), похожие на те, из которых она когда-то и возникла. Но есть одна существенная разница — каждая начальная сингулярность (д) похожа на ту, что была при Большом взрыве: время истекает из нее, давая начало последующим событиям: после Большого взрыва возникает Вселенная, а в нашем случае возникает червоточина. В отличие от этого, каждая конечная сингулярность (е) похожа на Большой хруст (глава 13); время в нее втекает, и на этом все заканчивается: Вселенная в результате Большого хруста и червоточина в нашем случае. Все, что пытается пройти через червоточину за время ее короткой жизни, оказывается захваченным в момент стягивания и уничтоженным вместе с самой червоточиной в конечных сингулярностях (е)
Чтобы упростить вычисления, я рассмотрел идеализированную, совершенно сферическую червоточину (как на рис. 14.1, где наша трехмерная Вселенная представлена в двумерном виде, а червоточина — совершенно круглая в поперечном сечении). В результате двух страниц вычислений на основе уравнения поля Эйнштейна я открыл три вещи.
Во-первых, единственный способ удержать червоточину открытой — пропустить через нее вещество, которое будет расталкивать ее стенки гравитационными силами. Я буду называть такое вещество экзотическим, потому что, как мы увидим, оно сильно отличается от любого вещества, с которым когда-либо имел дело человек.
Во-вторых, я обнаружил, что точно так же, как экзотическое вещество расталкивает стенки червоточины, оно будет расталкивать гравитационными силами лучи света, проходящие через него. Другими словами, экзотическое вещество будет вести себя подобно дефокусирующей линзе; оно расфокусирует световой пучок гравитационными силами (см. Врезку 14.1).
В-третьих, я понял из уравнения поля Эйнштейна, что для того чтобы расфокусировать гравитационными силами световые пучки и раздвинуть стенки червоточины, экзотическое вещество в ней должно иметь отрицательную среднюю плотность энергии. Это утверждение требует некоторого объяснения. Вспомним, что гравитация (кривизна пространства-времени) есть производная массы (Врезка 2.6) и что масса и энергия эквивалентны (Врезка 5.2, где эквивалентность формулируется знаменитым уравнением Эйнштейна Е = Мс2). Это означает, что о гравитации тоже можно думать как о производной от энергии. Возьмем теперь плотность энергии вещества внутри червоточины (энергия на кубический сантиметр) с точки зрения светового пучка — т. е. с точки зрения путешественника, который движется через нору со скоростью света, — и усредним эту плотность энергии по траектории светового пучка. Результирующая усредненная плотность энергии должна быть отрицательной, для того чтобы вещество могло расфокусировать световой пучок и удерживать нору открытой — т. е. для того, чтобы вещество червоточины было «экзотическим».[135]
Врезка 14.1
Экзотическое вещество: как удержать открывшуюся червоточину
Любая сферическая червоточина, через которую может распространяться свет, будет дефокусировать его гравитационными силами. Чтобы доказать это, представим себе (см. рисунок), что пучок света перед тем как войти в червоточину проходит через собирающую линзу. Таким образом, световые лучи будут сходиться в направлении центра червоточины. Затем лучи будут продолжать распространяться радиально (как же еще им распространяться?). Это значит, что когда они появятся из другого отверстия, они будут расходиться радиально из центра червоточины. Пучок дефокусирован. Пространственно-временная кривизна червоточины, которая является причиной дефокусировки, является следствием экзотического вещества, которое пронизывает червоточину, удерживая ее открытой.